已知等差數(shù)列{an}的前20項的和為100,那么a7·a14的最大值為_________.
25

試題分析:因為等差數(shù)列{an}的前20項的和為100,所以因此,即a7·a14的最大值為25.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

(2013·孝感模擬)現(xiàn)有一根n節(jié)的竹竿,自上而下每節(jié)的長度依次構成等差數(shù)列,最上面一節(jié)長為10 cm,最下面的三節(jié)長度之和為114 cm,第6節(jié)的長度是首節(jié)與末節(jié)長度的等比中項,則n=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列的前項和為,且,則過 點的直線的斜率是(    )
A.1B.2C.4D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若a,b∈(0,+∞),且a,b的等差中項為,α=a+,β=b+,則α+β的最小值為
(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設等差數(shù)列的前n項和為,則=      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在公差為d的等差數(shù)列{an}中,我們可以得到an=am+(n﹣m)d (m,n∈N+).通過類比推理,在公比為q的等比數(shù)列{bn}中,我們可得(  )
A.bn=bm+qn﹣mB.bn=bm+qm﹣n
C.bn=bm×qm﹣nD.bn=bm×qn﹣m

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}滿足an+2=an+1+an,若a1=1,a5=8,則a3=( 。
A.1B.2C.3D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

下列命題正確的是 (  )
①若數(shù)列是等差數(shù)列,且
;
②若是等差數(shù)列的前項的和,則成等差數(shù)列;
③若是等比數(shù)列的前項的和,則成等比數(shù)列;
④若是等比數(shù)列的前項的和,且;(其中是非零常數(shù),),則為零.
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列中,,(是常數(shù),),且成公比不為的等比數(shù)列,則的通項公式是______.

查看答案和解析>>

同步練習冊答案