已知直線的方向向量為及定點(diǎn),動(dòng)點(diǎn)滿足,
MN
+
MF
=2
MG
MG
•(
MN
-
MF
)=0
,其中點(diǎn)N在直線l上.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同動(dòng)點(diǎn),直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點(diǎn),若AB恒過定點(diǎn),請求出該定點(diǎn)的坐標(biāo),若AB不恒過定點(diǎn),請說明理由.
分析:(1)由題意知:|MF|=|MN|,由拋物線的定義知,點(diǎn)M的軌跡為拋物線,由此能求出軌跡方程.
(2)設(shè)A(x1,y1),B(x2,y2),由題意得x1≠x2,所以AB的斜率存在,設(shè)其方程為y=kx+b,韋達(dá)定理知y1+y2=
8
k
,y1y2=
8b
k
,當(dāng)θ=
π
2
時(shí),直線AB恒過定點(diǎn)(-8,0);當(dāng)θ≠
π
2
時(shí),直線AB恒過定點(diǎn)(-8,
8
tanθ
)
解答:解:(1)由題意知:|MF|=|MN|,
由拋物線的定義知,點(diǎn)M的軌跡為拋物線,其中F(2,0)為焦點(diǎn),
x=-2為準(zhǔn)線,
所以軌跡方程為y2=8x;…(4分)
(2)設(shè)A(x1,y1),B(x2,y2),
由題意得x1≠x2(否則α+β=π)且x1,x2≠0,
所以AB的斜率存在,設(shè)其方程為y=kx+b,
顯然x1=
y
2
1
8
,x2=
y
2
2
8

將y=kx+b與y2=8x消去x,得ky2-8y+8b=0,由韋達(dá)定理知y1+y2=
8
k
,y1y2=
8b
k
①…(6分)
(i)當(dāng)θ=
π
2
時(shí),即α+β=
π
2
時(shí),
tanα•tanβ=1,
所以
y1
x1
y2
x2
=1,x1x2-y1y2=0
y
2
1
y
2
2
64
-y1y2=0
,
所以y1y2=64,由①知:
8b
k
=64
,所以b=8k.
因此直線AB的方程可表示為y=kx+8k,
即k(x+8)-y=0所以直線AB恒過定點(diǎn)(-8,0)…(8分)
(ii)當(dāng)θ≠
π
2
時(shí),由α+β=θ,
得tanθ=tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
8(y1+y2)
y1y2-64
,…(10分)
將①式代入上式整理化簡可得:tanθ=
8
b-8k
,
所以b=
8
tanθ
+8k

此時(shí),直線AB的方程可表示為y=kx+
8
tanθ
+8k

k(x+8)-(y-
8
tanθ
)=0

所以直線AB恒過定點(diǎn)(-8,
8
tanθ
)

當(dāng)θ=
π
2
時(shí),AB恒過定點(diǎn)(-8,0),當(dāng)θ≠
π
2
時(shí),
AB恒過定點(diǎn)(-8,
8
tanθ
)
.…(12分)
點(diǎn)評:本題主要考查橢圓標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,圓的簡單性質(zhì)等基礎(chǔ)知識.考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)期末理)(13分)

 已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),又點(diǎn)在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線的方向向量為,若直線與橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省高三上學(xué)期期末考試文科數(shù)學(xué)試卷 題型:解答題

已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),又點(diǎn)在橢圓上.

(1)求橢圓M的方程;

(2)已知直線的方向向量為  ,若直線與橢圓交于兩點(diǎn),求面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),又點(diǎn)在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知直線的方向向量為及定點(diǎn),動(dòng)點(diǎn)滿足,,,其中點(diǎn)N在直線l上.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同動(dòng)點(diǎn),直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點(diǎn),若AB恒過定點(diǎn),請求出該定點(diǎn)的坐標(biāo),若AB不恒過定點(diǎn),請說明理由.

查看答案和解析>>

同步練習(xí)冊答案