精英家教網 > 高中數學 > 題目詳情

(理)已知函數數學公式
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調遞減;
(3)右圖給出的是與函數f(x)相關的一個程序框圖,試構造一個公差不為零的等差數列{an},使得該程序能正常運行且輸出的結果恰好為0.請說明你的理由.

解:(1)由
,
,任取 ,
都有f(-x)==-f(x),則該函數為奇函數.
(2)任取0<x1<x2<1,
則有0<x12<x22<1?2-x12>2-x22>1,?ln(2-x12)>ln(2-x22)>0.
,
所以 ,
即f(x1)>f(x2),
故函數f(x)在區(qū)間(0,1)上單調遞減.
(3)由程序框圖知,公差不為零的等差數列{an}要滿足條件,
則必有f(a1)+f(a2)+…+f(a10)=0.
由(1)知函數f(x)是奇函數,而奇函數的圖象關于原點對稱,
所以要構造滿足條件的等差數列{an},可利用等差數列的性質,只需等差數列{an}
滿足:a1+a10=a2+a9═a5+a6=0
即可.
我們可以先確定a5,a6使得a5+a6=0,因為公差不為零的等差數列{an}必是單調的數列,只要它的最大項和最小項在 中,即可滿足要求.
所以只要a5,a6
對應的點盡可能的接近原點.如取a5=-0.1,a6=0.1,存在滿足條件的一個等差數列{an}可以是an=0.2n-1.1(1≤n≤10,n∈N*).
分析:(1)先求出函數的定義域,得到定義域關于原點對稱,在檢驗-x與x的函數值之間的關系,得到奇函數.
(2)根據單調性的定義,設出已知大小關系的任意兩個變量,利用定義證明函數的單調性,得到函數是一個增函數.
(3)由程序框圖知,公差不為零的等差數列{an}要滿足條件,則必有f(a1)+f(a2)+…+f(a10)=0.所以要構造滿足條件的等差數列{an},可利用等差數列的性質,只需等差數列{an}滿足:a1+a10=a2+a9═a5+a6=0.
點評:本題主要考查函數的奇偶性、單調性,以及借助于程序框圖考查等差數列的有關性質,解題的關鍵是看清題目的實質,抓住解題的主要方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年博興二中綜合一理)(12分)已知函數

(1)寫出f(x)的單調區(qū)間;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年濟寧質檢理)(12分)

  已知函數

(1)求函數的最小正周期;

(2)在給定的坐標系內,用五點作圖法畫出函數在一個周期內的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年天津南開區(qū)質檢一理)(12分)

已知函數。

(1)求的值;

(2)求的最小正周期和在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年天津南開區(qū)質檢一理)(12分)

已知函數。

(1)若函數的導函數是奇函數,求的值;

(2)求函數的單調區(qū)間。

查看答案和解析>>

科目:高中數學 來源:2010-2011學年山西省高三期中考試數學卷 題型:解答題

(本小題滿分12分)A(理)已知函數,其中.

(1)若存在,使得成立,求實數的取值范圍;

(2)求函數的值域.

 

查看答案和解析>>

同步練習冊答案