【題目】(本小題滿分14分)如圖,四棱錐的底面ABCD 是平行四邊形,平面PBD⊥平面 ABCD, PB=PD, ⊥, ⊥, , 分別是, 的中點,連結(jié).求證:
(1)∥平面;
(2)⊥平面.
【答案】(1)詳見解析(2)詳見解析
【解析】試題分析:(1)證明線面平行,關(guān)鍵證明線線平行,這可根據(jù)三角形中位線性質(zhì)得到:在△中,因為, 分別是, 的中點,所以∥.再根據(jù)線面平行判定定理進行證明(2)證明線面垂直,需多次利用線線垂直與線面垂直相互轉(zhuǎn)化:先根據(jù)面面垂直性質(zhì)定理轉(zhuǎn)化為線面垂直:由平面PBD⊥平面ABCD,得⊥平面.從而⊥.又因為⊥,所以可得⊥平面.從而⊥.又因為⊥, ∥,所以⊥.從而可證⊥平面.
試題解析:證明:(1)連結(jié)AC,
因為ABCD 是平行四邊形,所以O為的中點. 2分
在△中,因為, 分別是, 的中點,
所以∥. 4分
因為平面, 平面,
所以∥平面. 6分
(2)連結(jié).因為是的中點,PB=PD,
所以PO⊥BD.
又因為平面PBD⊥平面ABCD,平面 平
面= , 平面
所以⊥平面.
從而⊥. 8分
又因為⊥, , 平面, 平面,
所以⊥平面.
因為平面,所以⊥. 10分
因為⊥, ∥,所以⊥. 12分
又因為平面, 平面, ,
所以⊥平面. 14分
科目:高中數(shù)學 來源: 題型:
【題目】運行如圖所示的程序框圖,若輸出的結(jié)果為 ,則判斷框內(nèi)可以填( )
A.k>98?
B.k≥99?
C.k≥100?
D.k>101?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,直線y=x﹣8與此拋物線交于A、B兩點,與x軸交于點C,O為坐標原點,若 =3 .
(1)求此拋物線的方程;
(2)求證:OA⊥OB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)已知數(shù)列(, )滿足, 其中, .
(1)當時,求關(guān)于的表達式,并求的取值范圍;
(2)設(shè)集合.
①若, ,求證: ;
②是否存在實數(shù), ,使, , 都屬于?若存在,請求出實數(shù), ;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于三角形滿足的條件,下列判斷正確的是( )
A.a=7,b=14,A=30°,有兩解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有兩解
D.b=9,c=10,B=60°,無解
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)當b=3﹣a時,對任意的x∈(﹣1,0]都有f(x)≥0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若x1∈[﹣1,2],x2∈[﹣1,2],使得f(x1)=g(x2),則實數(shù)a的取值范圍是( )
A.
B.
C.(0,3]
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)拋物線y2=2x的焦點為F,過點M( ,0)的直線與拋物線相交于A,B兩點,與拋物線的準線相交于C,|BF|=2,則△BCF和△ACF的面積之比為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com