(本小題滿分16分)
對于函數(shù)y=,x∈(0,,如果a,b,c是一個三角形的三邊長,那么,,也是一個三角形的三邊長, 則稱函數(shù)為“保三角形函數(shù)”.
對于函數(shù)y=,x∈,,如果a,b,c是任意的非負實數(shù),都有,,是一個三角形的三邊長,則稱函數(shù)為“恒三角形函數(shù)”.
(1)判斷三個函數(shù)“=x,=,=(定義域均為x∈(0,)”中,那些是“保三角形函數(shù)”?請說明理由;
(2)若函數(shù)=,x∈,是“恒三角形函數(shù)”,試求實數(shù)k的取值范圍;
(3)如果函數(shù)是定義在(0,上的周期函數(shù),且值域也為(0,,試證明:既不是“恒三角形函數(shù)”,也不是“保三角形函數(shù)”.
解析:(1)對于=x,它在(0,上是增函數(shù),不妨設a≤b≤c,則≤≤,因為a+b>c,所以+=a+b>c=,故是“保三角形函數(shù)”.
對于=,它在(0,上是增函數(shù),,不妨設a≤b≤c,則≤≤,因為a+b>c,所以+=+=>>=,故是“保三角形函數(shù)”.
對于=,取a=3,b=3,c=5,顯然a,b,c是一個三角形的三邊長,但因為+=<=,所以,,不是三角形的三邊長,故不是“保三角形函數(shù)”.
(2)解法1:因為=1+,所以當x=0時,=1;當x>0時,=1+.
①當k=-1時,因為=1,適合題意.
②當k>-1時,因為=1+≤1+=k+2,所以∈,.從而當k>-1時,∈,.由1+1>k+2,得k<0,所以-1<k<0.
③當k<-1時,因為=1+≥1+=k+2,所以∈,,從而當k>-1時,所以∈,.由得,k>,所以<k<-1.
綜上所述,所求k的取值范圍是(,0).
解法2:因為==,
①當k=-1時,因為=1,適合題意.
②當k>-1時,可知在,上單調(diào)遞增,在,上單調(diào)遞減,而=1,=k+2,且當x>1時,>1,所以此時∈,.
③當k<-1時,可知在,上單調(diào)遞減,在,上單調(diào)遞增,而=1,=k+2,且當x>1時,<1,所以此時∈,.
(以下同解法1)
(3)①因為的值域是(0,,所以存在正實數(shù)a,b,c,使得=1,=1,=2,顯然這樣的,,不是一個三角形的三邊長.
故不是“恒三角形函數(shù)”.
②因為的最小正周期為T(T>0),令a=b=m+kT,c=n,其中k∈,且k>,則a+b>c,又顯然b+c>a,c+a>b,所以a,b,c是一個三角形的三邊長.
但因為===1,==2,所以,,不是一個三角形的三邊長.
故也不是“保三角形函數(shù)”.
(說明:也可以先證不是“保三角形函數(shù)”,然后根據(jù)此知也不是“恒三角形函數(shù)”.)
【解析】略
科目:高中數(shù)學 來源: 題型:
(2010江蘇卷)18、(本小題滿分16分)
在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,。
(1)設動點P滿足,求點P的軌跡;
(2)設,求點T的坐標;
(3)設,求證:直線MN必過x軸上的一定點(其坐標與m無關)。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年泰州中學高一下學期期末測試數(shù)學 題型:解答題
(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實數(shù)的范圍;
(Ⅲ)如果,當“對任意恒成立”與“在內(nèi)必有解”同時成立時,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;
(總開發(fā)費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆安徽省蚌埠市高二下學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分16分)設命題:方程無實數(shù)根; 命題:函數(shù)
的值域是.如果命題為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省高一第三階段檢測數(shù)學卷 題型:解答題
(本小題滿分16分)
已知函數(shù)f(x)=為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
(Ⅰ)求f()的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com