【題目】如圖,已知多面體ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)證明:AB1⊥平面A1B1C1;
(Ⅱ)求直線AC1與平面ABB1所成的角的正弦值.
【答案】(Ⅰ)見(jiàn)解析
(Ⅱ)
【解析】分析:方法一:(Ⅰ)通過(guò)計(jì)算,根據(jù)勾股定理得,再根據(jù)線面垂直的判定定理得結(jié)論,(Ⅱ)找出直線AC1與平面ABB1所成的角,再在直角三角形中求解.
方法二:(Ⅰ)根據(jù)條件建立空間直角坐標(biāo)系,寫(xiě)出各點(diǎn)的坐標(biāo),根據(jù)向量之積為0得出,再根據(jù)線面垂直的判定定理得結(jié)論,(Ⅱ)根據(jù)方程組解出平面的一個(gè)法向量,然后利用與平面法向量的夾角的余弦公式及線面角與向量夾角的互余關(guān)系求解.
詳解:方法一:
(Ⅰ)由得,
所以.
故.
由, 得,
由得,
由,得,所以,故.
因此平面.
(Ⅱ)如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連結(jié).
由平面得平面平面,
由得平面,
所以是與平面所成的角.學(xué)科.網(wǎng)
由得,
所以,故.
因此,直線與平面所成的角的正弦值是.
方法二:
(Ⅰ)如圖,以AC的中點(diǎn)O為原點(diǎn),分別以射線OB,OC為x,y軸的正半軸,建立空間直角坐標(biāo)系O-xyz.
由題意知各點(diǎn)坐標(biāo)如下:
因此
由得.
由得.
所以平面.
(Ⅱ)設(shè)直線與平面所成的角為.
由(Ⅰ)可知
設(shè)平面的法向量.
由即可取.
所以.
因此,直線與平面所成的角的正弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的值.
()設(shè),當(dāng)時(shí),函數(shù)的圖象恒不在直線的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,圓,一動(dòng)圓在軸右側(cè)與軸相切,同時(shí)與圓相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線E是以,為焦點(diǎn)的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從四所高校中選2所.
(1)求甲、乙、丙三名同學(xué)都選高校的概率;
(2)若甲必選,記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是上、下底邊長(zhǎng)分別為2和6,高為的等腰梯形,將它沿對(duì)稱軸折疊,使二面角為直二面角.
(1)證明: ;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點(diǎn)共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱中,,平面,D為AC的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)設(shè)E是上一點(diǎn),試確定E的位置使平面平面BDE,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為7,點(diǎn)M在AB上,點(diǎn)N在BC上,且AM=BN=3,現(xiàn)有一束光線從點(diǎn)M射向點(diǎn)N,光線每次碰到正方形的邊時(shí)反射,則這束光線從第一次回到原點(diǎn)M時(shí)所走過(guò)的路程為( )
A. B. 60 C. D. 70
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com