橢圓中心在坐標(biāo)原點(diǎn),A(2,0),B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn)。
(1)若,求k的值;
(2)求四邊形AEBF面積的最大值。
解:(1)依題設(shè)得橢圓的方程為
直線的方程分別為,
如圖,設(shè)
其中
滿足方程
  ①


由D在AB上知,得
所以
化簡(jiǎn)得
解得;
(2)根據(jù)點(diǎn)到直線的距離公式和①式知,點(diǎn)的距離分別為



所以四邊形的面積為





當(dāng),即當(dāng)時(shí),上式取等號(hào)
所以S的最大值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓中心在坐標(biāo)原點(diǎn),F(xiàn)為左焦點(diǎn),當(dāng)
FB
AB
時(shí),其離心率為
5
-1
2
,此類橢圓被稱為“黃金橢圓”.類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率e等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,A、B是頂點(diǎn),F(xiàn)是左焦點(diǎn);當(dāng)BF⊥AB時(shí),此類橢圓稱為“黃金橢圓”,其離心率為
5
-1
2
.類比“黃金橢圓”可推算出“黃金雙曲線”的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓中心在坐標(biāo)原點(diǎn),F(xiàn)為左焦點(diǎn),當(dāng)
FB
AB
時(shí),其離心率為
5
-1
2
,此類橢圓被稱為“黃金橢圓”,類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率e=
3
2
,若橢圓與直線x+y+1=0交于P,Q兩點(diǎn),且OP⊥OQ(O為坐標(biāo)原點(diǎn)),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓中心在坐標(biāo)原點(diǎn),A(2,O)是它的一個(gè)頂點(diǎn),且長(zhǎng)軸是短軸的2倍,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的焦點(diǎn)在x軸,設(shè)直線y=kx(k>0)與橢圓相交于E、F兩點(diǎn),求四邊形AEBF面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案