精英家教網 > 高中數學 > 題目詳情

給出下列命題:①函數y=cos|x|是周期函數.
②函數y=x2的值域是{y|0≤y≤4},則它的定義域是{x|-2≤x≤2}.
③命題:“x,y是實數,若x≠y,則x2≠y2”的逆命題為真.
④在△ABC中,a=5,b=8,c=7,則數學公式
其中正確結論的序號是________(填寫你認為正確的所有結論序號)

①③
分析:利用余弦函數的性質判斷①的正誤;利用函數的值域求出函數的定義域判斷②的正誤;利用命題的判斷方法推出③的正誤;判斷三角形的形狀判斷④的正誤.
解答:因為函數y=cos|x|=cosx所以函數是偶函數,①正確;
函數y=x2的值域是{y|0≤y≤4},則它的定義域是{x|-2≤x≤2}可以是{x|0≤x≤2}所以②不正確;
命題:“x,y是實數,若x≠y,則x2≠y2”的逆命題為真③正確;
在△ABC中,a=5,b=8,c=7,∠C為銳角,則,所以④不正確.
故答案為:①③.
點評:本題是基礎題,考查函數的基本性質的應用,掌握函數的基本性質是解題的關鍵和根本.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:
①函數f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]
;
③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現給出下列命題:
①函數f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實數a,使得函數f (x)在R上是增函數;
③a>1時函數y=f (|x|) 有最小值-2.
其中正確的命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調函數”.現給出下列命題:
①函數f(x)=2x為R上的“1高調函數”;
②函數f(x)=sin2x為R上的“A高調函數”;
③如果定義域為[-1,+∞)的函數f(x)=x2為[-1,+∞)上“m高調函數”,那么實數m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①函數y=sin|x|不是周期函數;        ②函數y=tanx在定義域內是增函數;
③函數y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數y=sin(x+
2
)
是偶函數.
其中正確的命題的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①函數y=cos(
2
3
x+
π
2
)
是奇函數;②函數y=sinx+cosx的最大值為
3
2

③函數y=tanx在第一象限內是增函數;
④函數y=sin(2x+
π
2
)
的圖象關于直線x=
π
12
成軸對稱圖形.
其中正確的命題序號是

查看答案和解析>>

同步練習冊答案