自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點(diǎn)P的軌跡方程.
方法一(直接法)
設(shè)P(x,y),連接OP,則OP⊥BC,…(2分)
①當(dāng)x≠0時(shí),kOP•kAP=-1,即
y
x
y
x-4
=-1
,即x2+y2-4x=0.(★)…(8分)
②當(dāng)x=0時(shí),P點(diǎn)坐標(biāo)(0,0)是方程(★)的解,…(12分)
∴BC中點(diǎn)P的軌跡方程為x2+y2-4x=0(在已知圓內(nèi)的部分).…(14分)
方法二(定義法)
由方法一知OP⊥AP,取OA中點(diǎn)M,則M(2,0),|PM|=
1
2
|OA|=2
,
由圓的定義知,∴P的軌跡方程為x2+y2-4x=0(在已知圓內(nèi)的部分).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓G:經(jīng)過(guò)橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)橢圓外一點(diǎn)(m,0)()傾斜角為的直線L交橢圓與C、D兩點(diǎn).
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓Γ:(a>b>0)經(jīng)過(guò)D(2,0),E(1,)兩點(diǎn).
(1)求橢圓Γ的方程;
(2)若直線與橢圓Γ交于不同兩點(diǎn)A,B,點(diǎn)G是線段AB中點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),設(shè)射線OG交Γ于點(diǎn)Q,且.
①證明:
②求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一動(dòng)圓與已知圓O1(x+2)2+y2=1外切,與圓O2(x-2)2+y2=49內(nèi)切,
(1)求動(dòng)圓圓心的軌跡方程C;
(2)已知點(diǎn)A(2,3),O(0,0)是否存在平行于OA的直線l與曲線C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線
x2
2
-y2=1
的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn).
(1)求直線A1P與A2Q交點(diǎn)的軌跡E的方程;
(2)若過(guò)點(diǎn)H(0,h)(h>1)的兩條直線l1和l2與軌跡E都只有一個(gè)交點(diǎn),且l1⊥l2,求h的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)M與點(diǎn)F(3,0)的距離比它到直線x+1=0的距離多2,則點(diǎn)M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線l:y=mx+1與曲線C:ax2+y2=2(m、a∈R)交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)m=0時(shí),有∠AOB=
π
3
,求曲線C的方程;
(2)當(dāng)實(shí)數(shù)a為何值時(shí),對(duì)任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)已知點(diǎn)M(0,-1),當(dāng)a=-2,m變化時(shí),動(dòng)點(diǎn)P滿足
MP
=
OA
+
OB
,求動(dòng)點(diǎn)P的縱坐標(biāo)的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓=1(a>b>0)的兩頂點(diǎn)為A(a,0),B(0,b),且左焦點(diǎn)為F,△FAB是以角B為直角的直角三角形,則橢圓的離心率e為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2是橢圓+=1的兩焦點(diǎn),經(jīng)點(diǎn)F2的的直線交橢圓于點(diǎn)A、B,若|AB|=5,則|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案