設(shè)a為實(shí)數(shù), 函數(shù) 
(Ⅰ)求的極值.
(Ⅱ)當(dāng)a在什么范圍內(nèi)取值時(shí),曲線軸僅有一個(gè)交點(diǎn).

(Ⅰ) 極大值是,極小值是 ;(Ⅱ) ∪(1,+∞)。

解析試題分析:(I)=3-2-1若=0,則==-=1
當(dāng)變化時(shí),變化情況如下表:


(-∞,-)

(-,1)
1
(1,+∞)

+
0

0
+


極大值

極小值

的極大值是,極小值是   --------8分
(II)由(I)可知,取足夠大的正數(shù)時(shí),有>0,取足夠小的負(fù)數(shù)時(shí)有<0,
結(jié)合的單調(diào)性可知:
<0,或-1>0時(shí),曲線=軸僅有一個(gè)交點(diǎn),
∴當(dāng)∪(1,+∞)時(shí),曲線=軸僅有一個(gè)交點(diǎn)。  14分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點(diǎn)評(píng):做此題的關(guān)鍵是分析出:要滿足題意只需極大值小于0或者極小值大于0.考查了學(xué)生分析問(wèn)題,解決問(wèn)題的能力。屬于中檔題型。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元(∈[7,11])時(shí),一年的銷售量為萬(wàn)件.
(1)求分公司一年的利潤(rùn)(萬(wàn)元)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知時(shí)有極大值6,在時(shí)有極小值
的值;并求在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(I)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求的值;
(II)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求的取值范圍;
(III)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點(diǎn)處的切線為,直線軸相交于點(diǎn).若點(diǎn)的縱坐標(biāo)恒小于1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),為常數(shù),),且這兩函數(shù)的圖像有公共點(diǎn),并在該公共點(diǎn)處的切線相同.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若不等式在區(qū)間(0,+上恒成立,求的取值范圍;
(3)求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),且
(1)求函數(shù)的解析式.
(2)若在區(qū)間上恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)若函數(shù)處取得極值,求,的值;
(Ⅱ)若,函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案