【題目】如圖,直三棱柱中,,,點是中點.
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】
(1)由等腰三角形和直棱柱的性質(zhì),得出和,根據(jù)線面垂直的判定定理,即可證出平面;
(2)連接,交于點,連接,結(jié)合三角形的中位線得出,根據(jù)線面平行的判定定理,即可證出平面;
(3)連,交于點,分別取、中點、,連接、、,根據(jù)線面垂直的判定定理,可證出平面和平面,從而得出就是二面角的平面角,最后利用幾何法求出二面角的余弦值.
解:(1)證明:,是中點,,
又在直三棱柱中,平面,平面,
,
又,平面,平面,
平面.
(2)證明:連接,交于點,連接,
、分別是、的中點,
是的中位線,,
平面,平面,
平面
(3)解:連,交于點,分別取、中點、,連接、、,
四邊形是正方形且、分別是、的中點,故,
在中,,,
,,
又,分別是,中點且,
,
又在直三棱柱中,平面ABC,平面ABC,
,
,平面,平面,
平面,
平面,平面,
,,
又,,平面,平面,
平面,
平面,,
又平面平面
就是二面角的平面角,
設(shè),則在中,,
,
故,
故,
即二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海中一小島的周圍 內(nèi)有暗礁,海輪由西向東航行至處測得小島位于北偏東,航行8后,于處測得小島在北偏東(如圖所示).
(1)如果這艘海輪不改變航向,有沒有觸礁的危險?請說明理由.
(2)如果有觸礁的危險,這艘海輪在處改變航向為東偏南()方向航行,求的最小值.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點.
(1)求證:BD∥平面FGH;
(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45° ,求平面FGH與平面ACFD所成的角(銳角)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=g(x)=f(x)+x-6lnx,其中R.
(1)當(dāng)=1時,判斷f(x)的單調(diào)性;
(2)當(dāng)=2時,求出g(x)在(0,1)上的最大值;
(3)設(shè)函數(shù)當(dāng)=2時,若總有成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,一動圓與直線相切且與圓外切.
(1)求動圓圓心的軌跡的方程;
(2)過作直線,交(1)中軌跡于兩點,若中點的縱坐標(biāo)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,,②,,③,三個條件中任選一個補充在下面問題中,并加以解答.
已知的內(nèi)角A,B,C的對邊分別為a,b,c,若,______,求的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com