如圖所示的幾何體,是由棱長為2的正方體ABCD-A1B1C1D1截去一個角后所得的幾何體.
(1)試畫出該幾何體的三視圖;(主視圖投影面平行平面DCC1D1,主視方向如圖所示.請將三張視圖按規(guī)定位置畫在答題紙的相應虛線框內(nèi))
(2)若截面△MNH是邊長為2的正三角形,求該幾何體的體積V.

【答案】分析:(1)根據(jù)三視圖的定義可畫出該幾何體的三視圖
(2)由正三角形△MNH是的邊長,先求出截掉的三棱錐的棱長和體積,用正方體的體積減掉小三棱錐的體積即可
解答:解(1)

(2)設原正方體中由頂點B1出發(fā)的三條棱的棱長分別為B1M=x,B1N=y,B1H=z.
結合題意,可知,,解得
因此,所求幾何體的體積=
點評:本題考查由三視圖求面積、體積,求解的關鍵是由視圖得出幾何體的長、寬、高等性質(zhì),熟練掌握各種類型的幾何體求體積的公式是關鍵
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)如圖所示的幾何體,是將高為2、底面半徑為1的圓柱沿過旋轉(zhuǎn)軸的平面切開后,將其中一半沿切面向右水平平移后形成的封閉體.O1O2,
O
2
分別為AB,BC,DE的中點,F(xiàn)為弧AB的中點,G為弧BC的中點.
(1)求這個幾何體的表面積;
(2)求異面直線AF與
GO
2
所成的角的大。ńY果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃浦區(qū)二模)如圖所示的幾何體,是由棱長為2的正方體ABCD-A1B1C1D1截去一個角后所得的幾何體.
(1)試畫出該幾何體的三視圖;(主視圖投影面平行平面DCC1D1,主視方向如圖所示.請將三張視圖按規(guī)定位置畫在答題紙的相應虛線框內(nèi))
(2)若截面△MNH是邊長為2的正三角形,求該幾何體的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省“十!备呷谝淮温(lián)考文科數(shù)學試卷(解析版) 題型:解答題

在如圖所示的幾何體中,是邊長為2的正三角形. 若平面,平面平面, ,且

(1)求證://平面;

(2)求證:平面平面.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市浦東新區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖所示的幾何體,是將高為2、底面半徑為1的圓柱沿過旋轉(zhuǎn)軸的平面切開后,將其中一半沿切面向右水平平移后形成的封閉體.分別為AB,BC,DE的中點,F(xiàn)為弧AB的中點,G為弧BC的中點.
(1)求這個幾何體的表面積;
(2)求異面直線AF與所成的角的大。ńY果用反三角函數(shù)值表示).

查看答案和解析>>

同步練習冊答案