(本題滿分12分)
已知定義域為的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)解不等式
(1);(2)

試題分析:利用函數(shù)奇偶性、函數(shù)單調(diào)性求解
(Ⅰ)因為是奇函數(shù),所以=0,即
又由f(1)= -f(-1)知            ……6分
(Ⅱ)由(Ⅰ)知,易知
為減函數(shù)。又因是奇函數(shù),從而不等式: 轉(zhuǎn)化為:      
所以原不等式的解集為   …… 12分
點評:解決此類問題的關(guān)鍵是理解函數(shù)奇偶性,掌握函數(shù)單調(diào)性,要有較好的運算求解能力,難度中等。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為定義在上的奇函數(shù),當時,
(1)求上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)為偶函數(shù),且在上單調(diào)遞增的函數(shù)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)為常數(shù)),若在區(qū)間上是單調(diào)增函數(shù),則的取值范圍是                。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=>2),BC=2,且AE=AH=CF=CG,設(shè)AE=,綠地面積為.

(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域;
(2)當AE為何值時,綠地面積最大?  (10分) 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)上是增函數(shù),則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)在區(qū)間上是增函數(shù),則的范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義域為R的函數(shù)滿足,當時,單調(diào)遞增.若,則的值(   )  
A.恒小于0B.恒大于0C.可能為0D.可正可負

查看答案和解析>>

同步練習冊答案