已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點、(,都在軸上方),且
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
(1),(2),(3).

試題分析:(1)本題橢圓方程的求法是軌跡法.這是由于題目沒有明確直線是左準線,點是左焦點.不可利用待定系數(shù)法求解. 設,則,化簡得: 橢圓C的方程為:,(2)條件中角的關(guān)系一般化為斜率,利用坐標進行求解. 因為,所以,由題意得,可求與橢圓交點,從而可得直線方程(3)直線過定點問題,一般先表示出直線, ,利用等量關(guān)系將兩元消為一元. ,代入得:,.化簡得,直線方程:直線總經(jīng)過定點
解:(1)設,則,       (2分)

化簡得: 橢圓C的方程為:   (4分)
(2),
,   (3分)
代入得:,,代入
,   (5分)
,   (6分)
(3)解法一:由于,。   (1分)

設直線方程:,代入得:
   (3分)



,   (5分)
直線方程:直線總經(jīng)過定點   (6分)
解法二:由于,所以關(guān)于x軸的對稱點在直線上。


設直線方程:,代入得:


,,令,得:




直線總經(jīng)過定點
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓經(jīng)過點
(1)求橢圓的方程及其離心率;
(2)過橢圓右焦點的直線(不經(jīng)過點)與橢圓交于兩點,當的平分線為 時,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓=1(a>b>0)的兩頂點為A(a,0),B(0,b),且左焦點為F,△FAB是以角B為直角的直角三角形,則橢圓的離心率e為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知橢圓的左、右焦點分別、焦距為,且與雙曲線共頂點.為橢圓上一點,直線交橢圓于另一點
(1)求橢圓的方程;
(2)若點的坐標為,求過、、三點的圓的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,是橢圓的左右焦點,且橢圓經(jīng)過點.
(1)求該橢圓方程;
(2)過點且傾斜角等于的直線,交橢圓于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過點作傾斜角為的直線與曲線C交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知圓E ,點,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)點,,點G是軌跡上的一個動點,直線AG與直線相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左、右焦點為,過作直線交C于A,B兩點,若是等腰直角三角形,且,則橢圓C的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案