【題目】小李從網(wǎng)上購(gòu)買了一件商品,快遞員計(jì)劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時(shí)間為下午5:30-6:00.快遞員到小李家時(shí),如果小李未到家,則快遞員會(huì)電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來(lái);否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )

A. B. C. D.

【答案】D

【解析】設(shè)快遞員到小李家的時(shí)間為x,小李到家的時(shí)間為y,

由題意可得所有基本事件構(gòu)成的平面區(qū)域?yàn)?/span>設(shè)小李需要去快遞柜收取商品”為事件A,則事件A包含的基本事件構(gòu)成的平面區(qū)域?yàn)?/span>,如圖陰影部分所示的直角梯形

中,當(dāng)時(shí), 當(dāng)時(shí),

∴陰影部分的面積為,

由幾何概型概率公式可得,小李需要去快遞柜收取商品的概率為.選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知fx)是定義在R上的奇函數(shù)且f-2=-3,當(dāng)x≥0時(shí),fx=ax-1,其中a0a≠1.

1)求的值;

2)求函數(shù)fx)的解析式;

3)已知gx=log2x,若對(duì)任意的x1[1,4],存在使得fmx1)+1≥gx2)(其中m≥0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)

是棱的中點(diǎn),平面與棱交于點(diǎn).

1)求證:;

2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1F2分別是雙曲線的左、右焦點(diǎn),且雙曲線C的實(shí)軸長(zhǎng)為6,離心率為

(1)求雙曲線C的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)P是雙曲線C上任意一點(diǎn),且|PF1|=10,求|PF2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日A, B, C三個(gè)城市18個(gè)銷售點(diǎn)的小麥價(jià)格如下表:

銷售點(diǎn)序號(hào)

所屬城市

小麥價(jià)格(元/噸)

銷售點(diǎn)序號(hào)

所屬城市

小麥價(jià)格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(Ⅰ)求B市5個(gè)銷售點(diǎn)小麥價(jià)格的中位數(shù)

(Ⅱ)甲從B市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購(gòu)買1噸小麥,乙從C市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購(gòu)買1噸小麥,求甲花費(fèi)的費(fèi)用比乙高的概率

(Ⅲ)如果一個(gè)城市的銷售點(diǎn)小麥價(jià)格方差越大,則稱其價(jià)格差異性越大.請(qǐng)你對(duì)A、B、C三個(gè)城市按照小麥價(jià)格差異性從大到小進(jìn)行排序(只寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列不等的解集
(1)求不等式 ≥1的實(shí)數(shù)解;
(2)解關(guān)于x的不等式 >1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0).
(1)在區(qū)間[2,3]上的最大值為4,最小值為1,求實(shí)數(shù)a,b的值;
(2)若b=1,對(duì)任意x∈[1,2),g(x)≥0恒成立,則a的范圍;
(3)若b=1,對(duì)任意a∈[2,3],g(x)≥0恒成立,則x的范圍;
(4)在(1)的條件下記f(x)=g(|x|),若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= +log2(6﹣x)的定義域是(
A.{x|x>6}
B.{x|﹣3<x<6}
C.{x|x>﹣3}
D.{x|﹣3≤x<6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案