精英家教網(wǎng)如圖,AB是圓O的直徑,C,D是圓O上兩點,AC與BD相交于點E,GC,GD是圓O的切線,點F在DG的延長線上,且DG=GF.求證:
(1)D、E、C、F四點共圓;        
(2)GE⊥AB.
分析:(Ⅰ)如圖,連接OC,OD,則OC⊥CG,OD⊥DG,可得四點O,D,G,C共圓.設∠CAB=∠1,∠DBA=∠2,∠ACO=∠3,可得∠COB=2∠1,∠DOA=2∠2.于是∠DGC=180°-∠DOC=2(∠1+∠2).利用切線長定理可得DG=CG,而DG=GF,可得GF=GC.從而可得∠F=∠1+∠2.可得∠DEC+∠F=180°,即可證明.
(Ⅱ)延長GE交AB于H.由GD=GC=GF,可得點G是經(jīng)過D,E,C,F(xiàn)四點的圓的圓心.可得GE=GC,∠GCE=∠GEC.又∠GCE+∠3=90°,∠1=∠3,可得∠AEH+∠1=90°,進而得出證明.
解答:精英家教網(wǎng)解:(Ⅰ)如圖,連接OC,OD,則OC⊥CG,OD⊥DG,
∴四點O,D,G,C共圓.
設∠CAB=∠1,∠DBA=∠2,∠ACO=∠3,
∠COB=2∠1,∠DOA=2∠2.
∴∠DGC=180°-∠DOC=2(∠1+∠2).
∵DG=GF,DG=CG.
∴GF=GC.
∴∠GCF=∠F.
∵∠DGC=2∠F,∴∠F=∠1+∠2.
又∵∠DEC=∠AEB=180°-(∠1+∠2),
∴∠DEC+∠F=180°,
∴D,E,C,F(xiàn)四點共圓.
(Ⅱ)延長GE交AB于H.
∵GD=GC=GF,∴點G是經(jīng)過D,E,C,F(xiàn)四點的圓的圓心.
∴GE=GC,∴∠GCE=∠GEC.
又∵∠GCE+∠3=90°,∠1=∠3,
∴∠GEC+∠3=90°,∴∠AEH+∠1=90°,
∴∠EHA=90°,即GE⊥AB.
點評:本題綜合考查了四點共圓的判定與性質(zhì)、切線長定理、圓的切線的性質(zhì)、互余角之間的關系、垂直的判定等基礎知識與基本技能方法,考查了推理能力和計算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱的一個底面ABC內(nèi)接于圓O,AB是圓O的直徑.
(1)求證:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,求幾何體EDABC的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省錦州市高考數(shù)學二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省寶雞中學2010屆高三適應性訓練(數(shù)學理) 題型:填空題

 A.(參數(shù)方程與極坐標)

直線與直線的夾角大小為         

 

B.(不等式選講)要使關于x的不等式在實數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習冊答案