若橢圓的左、右焦點(diǎn)分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成5:3兩段,則此橢圓的離心率為                (    )

A.            B.           C.               D.

 

【答案】

B

【解析】

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011314321971465995/SYS201301131432497615787723_DA.files/image001.png">,所以,又因?yàn)閍2-b2=c2,c=2b,所以5c2=4a2,所以e=。

考點(diǎn):本題考查橢圓的簡單性質(zhì);拋物線的簡單性質(zhì)。

點(diǎn)評:記準(zhǔn)橢圓與拋物線的焦點(diǎn)的坐標(biāo)是做題的關(guān)鍵。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(05年遼寧卷)(14分)

已知橢圓的左、右焦點(diǎn)分別是

、是橢圓外的動點(diǎn),滿足,

點(diǎn)P是線段與該橢圓的交點(diǎn),點(diǎn)T在線段上,并且

滿足

(Ⅰ)設(shè)為點(diǎn)P的橫坐標(biāo),證明

(Ⅱ)求點(diǎn)T的軌跡C的方程;

(Ⅲ)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使△的面積.若存在,求

的正切值;若不存在,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年四川卷理)設(shè)橢圓的左、右焦點(diǎn)分別是、,離心率,右準(zhǔn)線上的兩動點(diǎn)、,且

(Ⅰ)若,求的值;

(Ⅱ)當(dāng)最小時,求證共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別是,是橢圓外的動點(diǎn),滿足,點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)試問:在點(diǎn)的軌跡上,是否存在點(diǎn),使的面積,若存在,求的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)  已知橢圓的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),Q是橢圓外的動點(diǎn),滿足

點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),

點(diǎn)T在線段F2Q上,并且滿足  

(Ⅰ)設(shè)為點(diǎn)P的橫坐標(biāo),證明;

   (Ⅱ)求點(diǎn)T的軌跡C的方程; (Ⅲ)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,

使△F1MF2的面積S=若存在,求∠F1MF2的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅西北師大附中高三11月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓 的左、右焦點(diǎn)分別是,是橢圓右準(zhǔn)線上的一點(diǎn),線段的垂直平分線過點(diǎn).又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。

(1) 求橢圓的離心率的取值范圍。

(2)當(dāng)離心率最小且時,求橢圓的方程。

(3)若直線相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個橢圓交于、兩點(diǎn),與這個橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案