若直線y=kx+2與雙曲線x2-y2=6的左支交于不同的兩點(diǎn),那么k的取值范圍是( 。
分析:根據(jù)直線y=kx+2與雙曲線x2-y2=6的左支交于不同的兩點(diǎn),可得直線與雙曲線聯(lián)立方程有兩個(gè)不等的負(fù)根,進(jìn)而構(gòu)造關(guān)于k的不等式組,解不等式可得答案.
解答:解:聯(lián)立方程
y=kx+2
x2-y2=6

(1-k2)x2-4kx-10=0…①
若直線y=kx+2與雙曲線x2-y2=6的左支交于不同的兩點(diǎn),
則方程①有兩個(gè)不等的負(fù)根
△=16k2+40(1-k2)>0
-10
1-k2
>0
4K
1-k2
<0

解得:k∈(1,
15
3

故選D
點(diǎn)評:本題考查的知識(shí)點(diǎn)圓錐曲線中的范圍問題,其中分析出題目的含義是直線與雙曲線聯(lián)立方程有兩個(gè)不等的負(fù)根,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+2與雙曲線x2-y2=6只有一個(gè)交點(diǎn),那么實(shí)數(shù)k的值是( 。
A、
15
3
,1
B、±
15
3
C、±1
D、±
15
3
,±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx-2與拋物線y2=8x交于A、B兩點(diǎn),若線段AB的中點(diǎn)的橫坐標(biāo)是2,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx-2與焦點(diǎn)在x軸上的橢圓
x2
5
+
y2
m
=1
恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍為
[4,5)
[4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若直線y=kx+2與圓(x-2)2+(y-3)2=1相切,求實(shí)數(shù)k的值;
(2)若直線y=kx+2與圓(x-2)2+(y-3)2=1相離,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1,(a>b>0)
左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),點(diǎn)A、B坐標(biāo)為A(a,0),B(0,b),若△ABC面積為
3
2
,∠BF2A=120°.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線y=kx+2與橢圓交于不同的兩點(diǎn)M、N,且以MN為直徑的圓恰好過原點(diǎn),求實(shí)數(shù)k的取值;
(3)動(dòng)點(diǎn)P使得
F1P
F1F2
、
PF1
PF2
、
F2F
1
F2P
成公差小于零的等差數(shù)列,記θ為向量
PF1
PF2
的夾角,求θ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案