(1)求數(shù)列的通項(xiàng)公式

(2)求數(shù)列的前n項(xiàng)和

 

【答案】

(1)=

(2)Sn=

【解析】解:(1)an==

   (2) an==2(

∴Sn=2[(1-)+(-)+…+()]=2(1-)=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年揚(yáng)州中學(xué)高二下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(14分) 已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;(2) 已知數(shù)列是等和數(shù)列,且,公和為,求 的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

數(shù)列,滿足

(1)求,并猜想通項(xiàng)公式。

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問(wèn)利用遞推關(guān)系式得到,,,,并猜想通項(xiàng)公式

第二問(wèn)中,用數(shù)學(xué)歸納法證明(1)中的猜想。

①對(duì)n=1,等式成立。

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,所以當(dāng)n=k+1時(shí)結(jié)論成立可證。

數(shù)列,滿足

(1),,,并猜想通項(xiàng)公。  …4分

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對(duì)n=1,等式成立。  …5分

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,             ……9分

所以

所以當(dāng)n=k+1時(shí)結(jié)論成立                     ……11分

由①②知,猜想對(duì)一切自然數(shù)n均成立

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省揚(yáng)州中學(xué)高二(下)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案