已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.

(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,則

是否為定值?若是,求出其值;若不是,說明理由.

 

【答案】

(1) ,;(2)-1.

【解析】

試題分析:(1)根據(jù)拋物線的焦點(diǎn)坐標(biāo)滿足圓的方程確定等量關(guān)系,求解拋物線方程;根據(jù)橢圓的焦點(diǎn)和右定點(diǎn)也在圓上,確定橢圓方程;(2)利用已知的向量關(guān)系式進(jìn)行坐標(biāo)轉(zhuǎn)化求出,然后通過直線與拋物線方程聯(lián)立,借助韋達(dá)定理進(jìn)行化簡(jiǎn)并求值.

試題解析:(1)由拋物線的焦點(diǎn)在圓上得:,,∴拋物線                            3分

同理由橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上可解得:

得橢圓.                                               6分

(2)是定值,且定值為-1.

設(shè)直線的方程為,則

聯(lián)立方程組,消去得:

   ,                         9分

得:

整理得:,

.                14分

考點(diǎn):1.拋物線和橢圓的方程;(2)直線與拋物線的位置關(guān)系;(3)向量的坐標(biāo)運(yùn)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三下學(xué)期6月適應(yīng)性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.

(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,求的值;

(3)直線交橢圓兩不同點(diǎn),軸的射影分別為,,若點(diǎn)滿足,證明:點(diǎn)在橢圓上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三6月適應(yīng)性考試?yán)砜艫數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.

(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,求的值;

(3)直線交橢圓兩不同點(diǎn),軸的射影分別為,,若點(diǎn)滿足,證明:點(diǎn)在橢圓上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三6月適應(yīng)性考試文科A數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.

(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,則是否為定值?若是,求出其值;若不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省青島市高考模擬練習(xí)題(一)數(shù)學(xué)(理) 題型:解答題

(本小題滿分14分)已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.

 

(Ⅰ)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)的直線交拋物線、兩不同點(diǎn),交軸于點(diǎn),已知為定值.

(Ⅲ)直線交橢圓兩不同點(diǎn),軸的射影分別為,若點(diǎn)滿足:,證明:點(diǎn)在橢圓上.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案