方程x2-ax+b=0的兩根為α、β,方程x2-bx+c=0的兩根為γ、δ,其中α、β、γ、δ互不相等,設(shè)集合M={α,β,γ,δ},且集合S={x|x=u+υ,u∈M,υ∈M,u≠υ},P={x|x=uυ,u∈M,υ∈M,u≠υ},若S={5,7,8,9,10,12},P={6,10,14,15,21,35},求a、b、c.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022
①已知a,b為實(shí)數(shù),若a2-4b≥0,則x2+ax+b≤0有非空實(shí)數(shù)解集.
②當(dāng)2m-1>0時(shí),如果>0,那么m>-4.
③若a,b是整數(shù),則關(guān)于x的方程x2+ax+b=0有兩整數(shù)根.
④若a、b都不是整數(shù),則方程x2+ax+b=0無(wú)兩整數(shù)根.
⑤當(dāng)2m-1>0時(shí),如果m≤-4,則≤0.
⑥已知a,b為實(shí)數(shù),若x2+ax+b≤0有非空實(shí)數(shù)解,則a2-4b≥0.
⑦若方程x2+ax+b=0沒有兩整數(shù)根,則a不是整數(shù)或b不是整數(shù).
⑧已知a、b為實(shí)數(shù),若a2-4b<0,則關(guān)于x的不等式x2+ax+b≤0的解集為空集.
⑨當(dāng)2m-1>0時(shí),如果m>-4,則>0.
用序號(hào)表示上述命題間的關(guān)系(例(1)與(9)互為逆否命題):其中(1)___________是互為逆命題;(2)___________互為否命題;(3)___________互為逆否命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河北省衡水中學(xué)2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:013
(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2,(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對(duì)值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是
A.(1)與(2)的假設(shè)都錯(cuò)誤
B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)正確;(2)的假設(shè)錯(cuò)誤
D.(1)的假設(shè)錯(cuò)誤;(2)的假設(shè)正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008年天河區(qū)理科數(shù)學(xué)模擬卷(一) 題型:022
已知方程x2-ax+b=0的兩根分別為1和2,則不等式|ax-b|≤1的解集為________(用區(qū)間表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)含絕對(duì)值的不等式、不等式的證明專項(xiàng)訓(xùn)練(河北) 題型:填空題
已知方程x2-ax+b=0的兩根分別為1和2,則不等式≤1的解集為________(用區(qū)間表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com