已知
a
=(sinx,cosx)
b
=(
3
cosx,cosx)
,設(shè)函數(shù)f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[-
π
6
12
]
時(shí),求f(x)的值域.
分析:(1)將函數(shù)化簡(jiǎn)為單一函數(shù),f(x)=
a
b
=(
3
2
sin2x+
1
2
cos2x+
1
2
=sin(2x+
π
6
)+
1
2
,然后運(yùn)用周期公式得到結(jié)論.
(2)由(1)知f(x)=sin(2x+
π
6
)+
1
2
,結(jié)合定義域求解得到x∈[-
π
6
,
12
]
,2x+
π
6
∈[-
π
6
,π]
,根據(jù)函數(shù)圖象得到結(jié)論.
解答:解:(1)∵f(x)=
a
b
=
3
2
sin2x+
1
2
cos2x+
1
2
=sin(2x+
π
6
)+
1
2
,∴f(x)的最小正周期為π.                   
-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
得,-
π
3
+kπ≤x≤
π
6
+kπ
,(k∈Z),解得 -
π
3
+kπ ≤ x ≤ 
π
6
+kπ
,
故f(x)的單調(diào)增區(qū)間為[-
π
3
+kπ,
π
6
+kπ
],(k∈Z).  
(2)由(1)知f(x)=sin(2x+
π
6
)+
1
2
,又當(dāng) x∈[-
π
6
12
]
,2x+
π
6
∈[-
π
6
,π]
,故 -
1
2
≤sin(2x+
π
6
)≤1
,
從而 f(x)的值域?yàn)閇0,
3
2
].
點(diǎn)評(píng):本試題主要是考查了兩個(gè)向量的數(shù)量積公式,正弦函數(shù)的周期性、單調(diào)性、定義域和值域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx,1)
b
=(2cosx,2+cos2x)
,函數(shù)f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的最大值及取得最大值的自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx)
,函數(shù)f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期,并求其圖象對(duì)稱中心的坐標(biāo);
(2)當(dāng)0≤x≤
π
2
時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蕪湖二模)已知
a
=(sinx,1)
,
b
=(cosx,-
1
2
)
,函數(shù)f(x)=
a
•(
a
-
b
)
,那么下列四個(gè)命題中正確命題的序號(hào)是
②③④
②③④

①f(x)是周期函數(shù),其最小正周期為2π.
②當(dāng)x=
π
8
時(shí),f(x)有最小值2-
2
2

③[-
7
8
π,-
3
8
π]是函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間;
④點(diǎn)(-
π
8
,2)是函數(shù)f(x)的一個(gè)對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx,cosx),
b
=(
3
cosx,cosx)
,設(shè)函數(shù)f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[-
π
6
,
12
]
時(shí),求f(x)的最值并指出此時(shí)相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案