【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點.
(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值;
(3)在棱AD上是否存在一點P,使得BP∥平面AD1E?若存在,求DP的長;若不存在,說明理由.
【答案】
(1)證明:連接BD
∵ABCD﹣A1B1C1D1是長方體,∴D1D⊥平面ABCD,
又AC平面ABCD,∴D1D⊥AC
在長方形ABCD中,AB=BC,∴BD⊥AC
又BD∩D1D=D,∴AC⊥平面BB1D1D,
而D1E平面BB1D1D,∴AC⊥D1E
(2)解:如圖建立空間直角坐標系Dxyz,則A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),
∴
設(shè)平面AD1E的法向量為 ,則 ,即
令z=1,則
∴
∴DE與平面AD1E所成角的正弦值為
(3)解:假設(shè)在棱AD上存在一點P,使得BP∥平面AD1E.
設(shè)P的坐標為(t,0,0)(0≤t≤1),則
∵BP∥平面AD1E
∴ ,即 ,
∴2(t﹣1)+1=0,解得 ,
∴在棱AD上存在一點P,使得BP∥平面AD1E,此時DP的長 .
【解析】(1)利用線面垂直的判定定理,證明AC⊥平面BB1D1D,即可得到AC⊥D1E;(2)建立空間直角坐標系,確定面AD1E的法向量,利用向量的夾角公式,即可求DE與平面AD1E所成角的正弦值;(3)利用BP∥平面AD1E,可得 ,利用向量的數(shù)量積公式,可得結(jié)論.
【考點精析】本題主要考查了直線與平面平行的判定和直線與平面垂直的性質(zhì)的相關(guān)知識點,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;垂直于同一個平面的兩條直線平行才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意x1 , x2∈(0,+∞)都有 <0(x1≠x2),若實數(shù)a滿足f(log3a﹣1)+2f( a)≥3f(1),則a的取值范圍是( )
A.[ ,3]
B.[1,3]
C.(0, )
D.(0,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在軸上的圓與直線切于點.
(1)求圓的標準方程;
(2)已知,經(jīng)過原點,且斜率為正數(shù)的直線與圓交于兩點.
(。┣笞C: 為定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海中一小島的周圍 內(nèi)有暗礁,海輪由西向東航行至處測得小島位于北偏東,航行8后,于處測得小島在北偏東(如圖所示).
(1)如果這艘海輪不改變航向,有沒有觸礁的危險?請說明理由.
(2)如果有觸礁的危險,這艘海輪在處改變航向為東偏南()方向航行,求的最小值.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為(1,1)的圓C經(jīng)過點M(1,2).
(1)求圓C的方程;
(2)若直線x+y+m=0與圓C交于A、B兩點,且△ABC是直角三角形,求實數(shù)m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓C過點A(6,4),B(1,﹣1),且圓心在直線l:x﹣5y+7=0上.
(1)求圓C的方程;
(2)P為圓C上的任意一點,定點Q(7,0),求線段PQ中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)是定義域R上的奇函數(shù).
(1)若f(1)>0,試求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com