過直線上的動(dòng)點(diǎn)作拋物線的兩切線,為切點(diǎn).
(1)若切線的斜率分別為,求證:為定值;
(2)求證:直線過定點(diǎn).
(1)-4
(2)
【解析】
試題分析:(1)設(shè)過作拋物線的切線的斜率為,則切線的方程為,
與方程聯(lián)立,消去,得.
因?yàn)橹本與拋物線相切,所以,
即. 由題意知,此方程兩根為,
所以(定值). 4分
(2)設(shè),由,得.
所以在點(diǎn)處的切線斜率為:,因此,切線方程為:.
由,化簡可得,.
同理,得在點(diǎn)處的切線方程為.
因?yàn)閮汕芯的交點(diǎn)為,故,.
所以兩點(diǎn)在直線上,即直線的方程為:.
當(dāng)時(shí),,所以直線經(jīng)過定點(diǎn). 10分
考點(diǎn):直線與拋物線的位置關(guān)系
點(diǎn)評:主要是考查了直線與拋物線的位置關(guān)系的運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:黑龍江省大慶實(shí)驗(yàn)中學(xué)2011屆高三上學(xué)期期末考試數(shù)學(xué)理科試題 題型:044
已知以向量v=(1,)為方向向量的直線l過點(diǎn)(0,),拋物線C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線l的對稱點(diǎn)在該拋物的準(zhǔn)線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)A、B是拋物線C上兩個(gè)動(dòng)點(diǎn),過A作平行于x軸的直線m交直線OB于點(diǎn)N,若(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知以向量v=(1, )為方向向量的直線l過點(diǎn)(0, ),拋物線C: (p>0)的頂點(diǎn)關(guān)于直線l的對稱點(diǎn)在該拋物的準(zhǔn)線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)A、B是拋物線C上兩個(gè)動(dòng)點(diǎn),過A作平行于x軸的直線m交直線OB于點(diǎn)N,若
(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知以向量v=(1, )為方向向量的直線l過點(diǎn)(0, ),拋物線C: (p>0)的頂點(diǎn)關(guān)于直線l的對稱點(diǎn)在該拋物的準(zhǔn)線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)A、B是拋物線C上兩個(gè)動(dòng)點(diǎn),過A作平行于x軸的直線m交直線OB于點(diǎn)N,若
(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com