已知圓,則下列命題:①圓上的點到的最短距離的最小值為;②圓上有且只有一點到點的距離與到直線的距離相等;③已知,在圓上有且只有一點,使得以為直徑的圓與直線相切.真命題的個數(shù)為
A.B.C.D.
D

試題分析:已知動圓的圓心的軌跡方程為:,所以動圓構成的軌跡為夾在拋物線和拋物線之間的部分(包括邊界),所以①②③都滿足題意
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,
(Ⅰ)若過定點()的直線與圓相切,求直線的方程;
(Ⅱ)若過定點()且傾斜角為的直線與圓相交于兩點,求線段的中點的坐標;
(Ⅲ) 問是否存在斜率為的直線,使被圓截得的弦為,且以為直徑的圓經(jīng)過原點?若存在,請寫出求直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓心為點的圓與直線相切.

(1)求圓的標準方程;
(2)對于圓上的任一點,是否存在定點 (不同于原點)使得恒為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C和軸相切,圓心C在直線上,且被直線截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點為銳角的內(nèi)切圓圓心,過點作直線的垂線,垂足為,圓與邊相切于點.若,求的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面內(nèi)兩點(-1,1),(1,3).
(Ⅰ)求過兩點的直線方程;
(Ⅱ)求過兩點且圓心在軸上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C經(jīng)過A(1,1)、B(2,)兩點,且圓心C在直線l:x-y+1=0上,求圓C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知F1,F2分別是橢圓E:+y2=1的左、右焦點,F1,F2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(1)求圓C的方程;
(2)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,內(nèi)接于圓,,直線切圓于點,于點.若,則的長為           .

查看答案和解析>>

同步練習冊答案