【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若在區(qū)間上有最小值,求a的值.

【答案】(1)當(dāng)時, R上為增函數(shù);

當(dāng)時, ,上為增函數(shù),在上為減函數(shù);

當(dāng)時, 上為增函數(shù),在為減函數(shù).

(2)

【解析】

(1)求導(dǎo)后, 分三種情況討論可得;

(2)利用第(1)問的單調(diào)性分三種情況,求得函數(shù)的最小值與已知最小值相等,列式可解得.

1

當(dāng)時,則,所以R上為增函數(shù);

當(dāng)時,,所以,上為增函數(shù),在上為減函數(shù);

當(dāng)時,,所以上為增函數(shù),在為減函數(shù).

2)由(1)知,當(dāng)時,上為增函數(shù),所以,與題意矛盾;

當(dāng)時,上為增函數(shù),所以,與題意矛盾;

當(dāng)時,上為減函數(shù),在上為增函數(shù),所以,解得,與矛盾;

當(dāng)時,上為減函數(shù),所以,解得,滿足題意.

綜上可知

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公共汽車站有6個候車位排成一排,甲、乙、丙三個乘客在該汽車站等候228路公交車的到來,由于市內(nèi)堵車,228路公交車一直沒到站,三人決定在座位上候車,且每人只能坐一個位置,則恰好有2個連續(xù)空座位的候車方式的種數(shù)是( )

A.48B.54C.72D.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)處有極值,且其圖像在處切線與平行.

1)求函數(shù)的單調(diào)區(qū)間;

2)求函數(shù)的極大值與極小值的差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù)f(x)滿足f(x)+f′(x)>1,f(0)=4,則不等式f(x)>+1(e為自然對數(shù)的底數(shù))的解集為(  )

A.(0,+∞)B.(-∞,0)(3,+∞)

C.(-∞,0)(0,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)經(jīng)過短短幾年的發(fā)展,員工近百人.不知何因,人員雖然多了,但員工的實(shí)際工作效率還不如從前.月初,企業(yè)領(lǐng)導(dǎo)按員工年齡從企業(yè)抽選位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組,第二組,第三組,第四組,且得到如下頻率分布直方圖:

1)求實(shí)數(shù)的值;

2)若用簡單隨機(jī)抽樣方法從第二組、第三組中再隨機(jī)抽取人作進(jìn)一步交流,求“被抽取得人均來自第二組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù),滿足,為奇函數(shù),且,則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A. “若,則”的否命題為真命題

B. 函數(shù)的最小值為2

C. 命題“若,則”的逆否命題為真命題

D. 命題“”的否定是:“”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一項(xiàng)自“一帶一路”沿線20國青年參與的評選中“高鐵”、“支付寶”、“共享單車”和“網(wǎng)購”被稱作中國“新四大發(fā)明”,曾以古代“四大發(fā)明”推動世界進(jìn)步的中國,正再次以科技創(chuàng)新向世界展示自己的發(fā)展理念.某班假期分為四個社會實(shí)踐活動小組,分別對“新四大發(fā)明”對人們生活的影響進(jìn)行調(diào)查.于開學(xué)進(jìn)行交流報告會.四個小組隨機(jī)排序,則“支付寶”小組和“網(wǎng)購”小組不相鄰的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案