已知三棱錐中,平面,分別是直線上的點,且

(1) 求二面角平面角的余弦值
(2) 當為何值時,平面平面

(1) (2)

解析試題分析:(1)因為,三棱錐中,,平面,分別是直線上的點,且
所以,三角形BCD是等腰直角三角形,,AB=,,由三垂線定哩,得,,所以,是二面角的平面角,故二面角平面角的余弦值是。
(2)由已知得,,而CD⊥平面ABC,,所以,EF⊥平面ABC,EF⊥BE,平面平面ABC,所以,為使平面平面,只需BE⊥AC,此時,BE= ,AE= ,故=
考點:三棱錐的幾何特征,平行關系,垂直關系,角的計算。
點評:中檔題,立體幾何問題中,平行關系、垂直關系,角、距離、面積、體積等的計算,是常見題型,基本思路是將空間問題轉(zhuǎn)化成為平面問題,利用平面幾何知識加以解決。要注意遵循“一作,二證,三計算”。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,矩形,滿足上,上,且,,,,沿、將矩形折起成為一個直三棱柱,使、重合后分別記為,在直三棱柱中,點分別為的中點.

(I)證明:∥平面
(Ⅱ)若二面角為直二面角,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,的中點.(1)求點到面的距離;(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,邊長為2的正方形中,

(1)點的中點,點的中點,將分別沿折起,使兩點重合于點。求證:
(2)當時,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,多面體中,四邊形是邊長為的正方形,平面垂直于平面,且,.
(Ⅰ)求證:;
(Ⅱ)若分別為棱的中點,求證:∥平面;
(Ⅲ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直角梯形中,,,為線段的中點,將沿折起,使平面⊥平面,得到幾何體.

(1)若,分別為線段的中點,求證:∥平面
(2)求證:⊥平面
(3)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.

(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,

(I)求證
(II)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知⊥平面,是正三角形,,且的中點.

(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面BCE⊥平面

查看答案和解析>>

同步練習冊答案