設(shè)函數(shù).
(1)當(dāng),時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.
(1)函數(shù)的最大值為;(2)實(shí)數(shù)的取值范圍是;(3).
【解析】
試題分析:(1)將,代入函數(shù)的解析式,然后利用導(dǎo)數(shù)求出函數(shù)的最大值;(2)先確定函數(shù)的解析式,并求出函數(shù)的導(dǎo)數(shù),然后利用導(dǎo)數(shù)的幾何意義將問(wèn)題轉(zhuǎn)化為,利用恒成立的思想進(jìn)行求解;(3)方法一是利用參數(shù)分離,將問(wèn)題轉(zhuǎn)化為方程、有且僅有一個(gè)實(shí)根,然后構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的極值從而求出參數(shù)的值;方法二是直接構(gòu)造新函數(shù),利用導(dǎo)數(shù)求函數(shù)的極值,并對(duì)參數(shù)的取值進(jìn)行分類討論,從而求出參數(shù)的值.
試題解析:(1)依題意,的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031505310762709082/SYS201403150533251270440952_DA.files/image018.png">,
當(dāng),時(shí),,,
由 ,得,解得;
由 ,得,解得或.
,在單調(diào)遞增,在單調(diào)遞減;
所以的極大值為,此即為最大值;
(2),,則有在上有解,
∴,
,
所以當(dāng)時(shí),取得最小值,;
(3)方法1:由得,令,,
令,,∴在單調(diào)遞增,
而,∴在,,即,在,,即,
∴在單調(diào)遞減,在單調(diào)遞增,
∴極小值為,令,即時(shí)方程有唯一實(shí)數(shù)解.
方法2:因?yàn)榉匠?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031505310762709082/SYS201403150533251270440952_DA.files/image043.png">有唯一實(shí)數(shù)解,所以有唯一實(shí)數(shù)解,
設(shè),則,令,
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031505310762709082/SYS201403150533251270440952_DA.files/image064.png">,,所以(舍去),,
當(dāng)時(shí),,在上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
當(dāng)時(shí),取最小值.
若方程有唯一實(shí)數(shù)解,
則必有 即
所以,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031505310762709082/SYS201403150533251270440952_DA.files/image079.png">所以 12分
設(shè)函數(shù),因?yàn)楫?dāng)時(shí),是增函數(shù),所以至多有一解.
∵,∴方程(*)的解為,即,解得.
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的最值;2.函數(shù)不等式恒成立;3.參數(shù)分離法;4.分類討論法;4.函數(shù)的零點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市黃浦區(qū)格致中學(xué)高三(上)第二次測(cè)驗(yàn)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市黃浦區(qū)格致中學(xué)高三(上)第二次測(cè)驗(yàn)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省原名校高三下學(xué)期第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)。
(1)當(dāng)a=l時(shí),求函數(shù)的極值;
(2)當(dāng)a2時(shí),討論函數(shù)的單調(diào)性;
(3)若對(duì)任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三上學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省武漢市高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)當(dāng),時(shí),求所有使成立的的值。
(2)若為奇函數(shù),求證: ;
(3)設(shè)常數(shù)<,且對(duì)任意x,<0恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com