已知
a
b
均為單位向量,它們的夾角為60°,則|
a
-3
b
|=(  )
分析:先根據(jù)
a
,
b
的大小和夾角,求向量|
a
-3
b
|的平方,再開方即可
解答:解:∵
a
b
均為單位向量,它們的夾角為60°
|
a
-3
b
|
2
=|
a
|
2
-6
a
b
+9|
b
|
2
=1-6×1×1×
1
2
+9=7

|
a
-3
b
|
 
=
7

故選D
點評:本題考查向量模的計算和向量數(shù)量積的定義,求向量的?上惹笃椒,再開方.屬簡單題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,它們的夾角為60°,|
a
-3
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,它們的夾角為60°,那么|
a
+3
b
|
=(  )
A、
7
B、
10
C、
13
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,其夾角為θ,有下列四個命題P1:|
a
+
b
|>1?θ∈[0,
3
);P2:|
a
+
b
|>1?θ∈(
3
,π];P3:|
a
-
b
|>1?θ∈[0,
π
3
);P4:|
a
-
b
|>1?θ∈(
π
3
,π];其中的真命題是(  )
A、P1,P4
B、P1,P3
C、P2,P3
D、P2,P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,其夾角為θ,有下列四個命題:
P1:|
a
+
b
|>1?θ∈[0,
3
);P2:|
a
+
b
|>1?θ∈(
3
,π];P3:|
a
+
b
|>1?θ∈[0,
π
3
);P4:|
a
+
b
|>1?θ∈(
π
3
,0].
其中所有真命題的序號是
P1
P1

查看答案和解析>>

同步練習(xí)冊答案