在某種產(chǎn)品表面進(jìn)行腐蝕性刻線實(shí)驗(yàn),得到腐蝕深度y與腐蝕時(shí)間x之間相應(yīng)的一組觀察值,如下表:

x/s
5
10
15
20
30
40
50
60
70
90
120
y/μm
6
10
10
13
16
17
19
23
25
29
46
用散點(diǎn)圖及相關(guān)系數(shù)兩種方法判斷x與y的相關(guān)性.

作出如圖所示的散點(diǎn)圖.

腐蝕深度y與腐蝕時(shí)間x之間有很強(qiáng)的線性相關(guān)關(guān)系

解析解:(1)作出如圖所示的散點(diǎn)圖.

從散點(diǎn)圖可看出腐蝕深度y(μm)與腐蝕時(shí)間x(s)之間存在著較強(qiáng)的線性相關(guān)關(guān)系.
(2)相關(guān)系數(shù)r=
≈0.98,
顯然|r|>0.75.所以,腐蝕深度y與腐蝕時(shí)間x之間有很強(qiáng)的線性相關(guān)關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某普通高中共有教師人,分為三個(gè)批次參加研修培訓(xùn),在三個(gè)批次中男、女教師人數(shù)如下表所示:

 
第一批次
第二批次
第三批次
女教師



男教師



 
已知在全體教師中隨機(jī)抽取1名,抽到第二、三批次中女教師的概率分別是
(1)求的值;
(2)為了調(diào)查研修效果,現(xiàn)從三個(gè)批次中按的比例抽取教師進(jìn)行問卷調(diào)查,三個(gè)批次被選取的人數(shù)分別是多少?
(3)若從(2)中選取的教師中隨機(jī)選出兩名教師進(jìn)行訪談,求參加訪談的兩名教師“分別來自兩個(gè)批次”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為預(yù)防X病毒爆發(fā),某生物技術(shù)公司研制出一種X病毒疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測試沒有通過),公司選定2000個(gè)樣本分成三組,測試結(jié)果如下表:

分組



疫苗有效
673


疫苗無效
77
90

 
已知在全體樣本中隨機(jī)抽取1個(gè),抽到組疫苗有效的概率是0.33.
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測試結(jié)果,應(yīng)在組抽取樣本多少個(gè)?
(2)已知,,求通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽”,先在本校進(jìn)行選拔測試(滿分150分),若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;
(2)該校推薦選拔測試成績在110以上的學(xué)生代表學(xué)校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種水果的單個(gè)質(zhì)量在500g以上視為特等品.隨機(jī)抽取1000個(gè)該水果,結(jié)果有50個(gè)特等品.將這50個(gè)水果的質(zhì)量數(shù)據(jù)分組,得到下邊的頻率分布表.

(1)估計(jì)該水果的質(zhì)量不少于560g的概率;
(2)若在某批水果的檢測中,發(fā)現(xiàn)有15個(gè)特等品,據(jù)此估計(jì)該批水果中沒有達(dá)到特等品的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:

分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數(shù)
 
12
 
63
 
86
 
182
 
92
 
61
 
4
 
乙廠:
分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數(shù)
 
29
 
71
 
85
 
159
 
76
 
62
 
18
 
 
(1)試分別估計(jì)兩個(gè)分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”?
 
 
甲廠
 
乙廠
 
合計(jì)
 
優(yōu)質(zhì)品
 
 
 
 
 
 
 
非優(yōu)質(zhì)品
 
 
 
 
 
 
 
合 計(jì)
 
 
 
 
 
 
 
附:
P(χ2≥x0)
 
0.05
 
0.01
 
x0
 
3.841
 
6.635
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市為“市中學(xué)生知識競賽”進(jìn)行選拔性測試,且規(guī)定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的被淘汰.若有500人參加測試,學(xué)生成績的頻率分布直方圖如圖.

(1)求獲得參賽資格的人數(shù);
(2)根據(jù)頻率直方圖,估算這500名學(xué)生測試的平均成績;
(3)若知識競賽分初賽和復(fù)賽,在初賽中每人最多有5次選題答題的機(jī)會(huì),累計(jì)答對3題或答錯(cuò)3題即終止,答對3題者方可參加復(fù)賽.已知參賽者甲答對每一個(gè)問題的概率都相同,并且相互之間沒有影響.已知他連續(xù)兩次答錯(cuò)的概率為,求甲在初賽中答題個(gè)數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學(xué)校均為小學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

衡水某中學(xué)對高二甲、乙兩個(gè)同類班級進(jìn)行“加強(qiáng)‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率作用”的試驗(yàn),其中甲班為試驗(yàn)班(加強(qiáng)語文閱讀理解訓(xùn)練),乙班為對比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗(yàn)前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計(jì)幾次數(shù)學(xué)應(yīng)用題測試的平均成績(均取整數(shù))如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數(shù))
3
6
11
18
12
乙班
(人數(shù))
4
8
13
15
10
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分別估計(jì)兩個(gè)班級的優(yōu)秀率.
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷“加強(qiáng)‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”是否有幫助?
 
優(yōu)秀人數(shù)
非優(yōu)秀人數(shù)
總計(jì)
甲班
 
 
 
乙班
 
 
 
總計(jì)
 
 
 
參考公式及數(shù)據(jù):K2=,

查看答案和解析>>

同步練習(xí)冊答案