已知函數(shù)().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)請問,是否存在實數(shù)使上恒成立?若存在,請求實數(shù)的值;若不存在,請說明理由.
(1)在上單調(diào)遞增,在上單調(diào)遞減;(2)存在,=1。
解析試題分析:(1)1、求定義域,2、求導(dǎo)數(shù),然后令導(dǎo)數(shù)等于0,解出導(dǎo)函數(shù)根,再由,得出的取值范圍,則在此區(qū)間內(nèi)單調(diào)遞增,又由,得出的取值范圍,則在此區(qū)間內(nèi)單調(diào)遞減;(2)對于恒成立問題,一般要求出函數(shù)在區(qū)間內(nèi)的最大值或最小值。即恒成立,則,恒成立,則,本題要討論的取值范圍,再結(jié)合函數(shù)的單調(diào)性即可求解。
試題解析:(1) 2分
當(dāng)時,恒成立,
則函數(shù)在上單調(diào)遞增 4分
當(dāng)時,由得
則在上單調(diào)遞增,在上單調(diào)遞減 6分
(2)存在. 7分
由(1)得:當(dāng)時,函數(shù)在上單調(diào)遞增
顯然不成立;
當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減
∴,
只需即可 9分
令
則,
函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
∴, 10分
即對恒成立,
也就是對恒成立,
∴解得,
∴若在上恒成立,=1. 12分
考點:1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性問題;2、不等式恒成立問題;3、分類討論思想
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實數(shù)的值;
(3)設(shè)有兩個極值點、(),求實數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在與處都取得極值.
(1)求,的值;
(2)設(shè)函數(shù),若對任意的,總存在,使得、,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè) 圓與軸正半軸的交點為,與曲線的交點為,直線與軸的交點為.
(1)用表示和
(2)若數(shù)列滿足
(1)求常數(shù)的值,使得數(shù)列成等比數(shù)列;
(2)比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)滿足.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間(-3,3)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上為增函數(shù),,
(1)求的值;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com