(本題滿分14分).有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計:在鋼板的四個角處各切去一個邊長為的小正方形,剰余部分圍成一個長方體,該長方體的高是小正方形的邊長.
(1)請你求出這種切割、焊接而成的長方體容器的的容積V1(用表示);
(2)經(jīng)過設(shè)計(1)的方法,計算得到當(dāng)時,Vl取最大值,為了材料浪費(fèi)最少,工人師傅還實(shí)踐出了其它焊接方法,請寫出與(1)的焊接方法更佳(使材料浪費(fèi)最少,容積比Vl大)的設(shè)計方案,并計算利用你的設(shè)計方案所得到的容器的容積。
略
【解析】(1)解:設(shè)切去正方形邊長為x,則焊接成的長方體的底面邊長為
4—2x,高為x,
∴Vl=(4—2x)2x=4(x3一4x2+4x) (0<x<2) 7分
(2) 能設(shè)計出比(1)的方案更佳的方案; 8分
具體如下:
如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長方體容器. 11分
新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=3×2×1=6,
顯然V2>Vl. 13分
故第二種方案符設(shè)計得到的容積為6. 14分
第(2)問給分情況說明:
(1)本題是開放性習(xí)題,設(shè)計方案比較多,其它答案按相應(yīng)分?jǐn)?shù)給分;
(2)設(shè)計為錐體容器的得0分。
(3)設(shè)計的容器容積比V1小的得0分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動點(diǎn)滿足。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com