設(shè)拋物線
=2x的焦點為F,過點M(
,0)的直線與拋物線相交于A,B兩點,與拋物線的準線相交于C,
=2,則
與
的面積之比
=( )
:∵拋物線方程為
,∴焦點F的坐標為(
,0),準線方程為
如圖,設(shè)A(x
1,y
1),B(x
2,y
2),過A,B分別向拋物線的準線作垂線,垂足分別為E,F(xiàn),則,
把
代入拋物線
,得
,
∴直線AB過點
與
,
直線AB方程為
,代入拋物線方程
,解得
,
∵在△AEC中,BF∥AE,
∴
,
故答案為
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,設(shè)拋物線
的準線與
軸交于
,焦點為
;以
為焦點,離心率
的橢圓
與拋物線
在
軸上方的交點為
,延長
交拋物線于點
,
是拋物線
上一動點,且M在
與
之間運動.
(1)當
時,求橢圓
的方程,
(2)當
的邊長恰好是三個連續(xù)的自然數(shù)時,
求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)O為坐標原點,F(xiàn)為拋物線y
2=4x的焦點,A是拋物線上一點,若
=-4,則點A的坐標是
A.(2,±2) | B.(1,±2) | C.(1,2) | D.(2,2). |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知曲線
,點A(0,-2)及點B(3,a),從點A觀察點B,要使視線不被C擋住,則實數(shù)a的取值范圍是
A.(-∞,10) | B.(10,+∞) | C.(-∞,4) | D.(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
直線
是線段
的垂直平分線.設(shè)橢圓E的方程為
.
(1)當
在
上移動時,求直線
斜率
的取值范圍;
(2)已知直線
與拋物線
交于A、B兩個不同點,
與橢圓
交于P、Q兩個不同點,設(shè)AB中點為
,OP中點為
,若
,求橢圓
離心率的范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
的焦點到準線的距離為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
拋物線
的焦點坐標是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線的頂點為原點,焦點在
軸上。直線
與拋物線交于
A、
B兩點,
P(1,1
)為線段
AB的中點,則拋物線的方程為( )
A
B
C
D
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線過點(1,1),則該拋物線的
標準方程是 ______
查看答案和解析>>