設(shè),分別是橢圓的左右焦點,M是C上一點且與x軸垂直,直線與C的另一個交點為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且,求a,b.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓經(jīng)過橢圓的右焦點和上頂點.
(1)求橢圓的方程;
(2)過原點的射線與橢圓在第一象限的交點為,與圓的交點為,為的中點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知線段,的中點為,動點滿足(為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動點所在的曲線方程;
(2)若,動點滿足,且,試求面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圓的切線與x軸正半軸,y軸正半軸圍成一個三角形,當(dāng)該三角形面積最小時,切點為P(如圖).
(1)求點P的坐標(biāo);
(2)焦點在x軸上的橢圓C過點P,且與直線交于A,B兩點,若的面積為2,求C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知拋物線的焦點為,為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為時,為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個公共點,
(。┳C明直線過定點,并求出定點坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P是圓M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一點,點N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點Q,當(dāng)點P在圓M上運(yùn)動時,點Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)m=時,在x軸上是否存在一定點E,使得對曲線C的任意一條過E的弦AB,為定值?若存在,求出定點和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線上有一點到焦點的距離為.
(1)求及的值.
(2)如圖,設(shè)直線與拋物線交于兩點,且,過弦的中點作垂直于軸的直線與拋物線交于點,連接.試判斷的面積是否為定值?若是,求出定值;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)O為原點,若點A在直線,點B在橢圓C上,且,求線段AB長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com