【題目】已知函數(shù)fx=a--lnxgx=ex-ex+1

1)若a=2,求函數(shù)fx)在點(diǎn)(1,f1))處的切線方程;

2)若fx=0恰有一個(gè)解,求a的值;

3)若gx≥fx)恒成立,求實(shí)數(shù)a的取值范圍.

【答案】11;(2

【解析】試題分析:(1)f'1=0得切線斜率為1,進(jìn)而得切線方程;

2mx=+lnx,求導(dǎo)得函數(shù)單調(diào)性和最值,進(jìn)而得解;

3由()知函數(shù)的最大值為f1=a-1,gx=ex-ex+1,求導(dǎo)可得函數(shù)gx)的最小值為g1=11≥a-1,進(jìn)而得解.

試題解析:

1a=2,f'x=,f'1=0,切線方程為y=1;

2)令mx=+lnx,m'x=-+,

當(dāng)x在(0,1)時(shí),m'x)>0,mx)遞增,

當(dāng)x在(1,+∞)是,m'x)<0,mx遞減,

mx)的最大值為m1=1

fx=0恰有一個(gè)解,即y=a,與mx)只有一個(gè)交點(diǎn),a=1;

)由()知函數(shù)的最大值為f1=a-1gx=ex-ex+1g'x=ex-e,

當(dāng)x在(0,1)時(shí),g'x)<0,gx)遞減,

當(dāng)x在(1,+∞)時(shí),g'x)>0,gx)遞增,

函數(shù)gx)的最小值為g1=1,gxfx)恒成立,∴1≥a-1a≤2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,MN分別是PA,BC的中點(diǎn),且AD=2PD=2.

(1)求證:MN∥平面PCD;

(2)求證:平面PAC⊥平面PBD;

(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin2x-2sin2x-a.

①若f(x)=0在x∈R上有解,則a的取值范圍是______;

②若x1,x2是函數(shù)y=f(x)在[0,]內(nèi)的兩個(gè)零點(diǎn),則sin(x1+x2)=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).

(1)若,求的值;

(2)若記f(θ)=,θ∈[0,].當(dāng)1≤λ≤2時(shí),求f(θ)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P0,-2),橢圓E 的離心率為,F是橢圓E的右焦點(diǎn),直線PF的斜率為2O為坐標(biāo)原點(diǎn).

1)求橢圓E的方程;

2)直線l被圓Ox2+y2=3截得的弦長(zhǎng)為3,且與橢圓E交于A、B兩點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面是正三角形,且與底面垂直,底面是邊長(zhǎng)為2的菱形, 的中點(diǎn),過(guò)三點(diǎn)的平面交, 的中點(diǎn),求證:

(1)平面;

(2)平面

(3)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面使用類(lèi)比推理正確的是(  )

A. a(bc)abac類(lèi)比推出“cos(αβ)cosαcosβ

B. 3a3b,則ab類(lèi)比推出acbc,則ab

C. 平面中垂直于同一直線的兩直線平行類(lèi)比推出空間中垂直于同一平面的兩平面平行

D. 等差數(shù)列{an}中,若a100,則a1a2ana1a2a19n(n19,nN*)”類(lèi)比推出在等比數(shù)列{bn}中,若b91,則有b1b2bnb1b2b17n(n17,nN*)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|x+a|(a>-2)的圖象過(guò)點(diǎn)(2,1).

(1)求實(shí)數(shù)a的值;

(2)設(shè),在如圖所示的平面直角坐標(biāo)系中作出函數(shù)y=gx)的簡(jiǎn)圖,并寫(xiě)出(不需要證明)函數(shù)gx)的定義域、奇偶性、單調(diào)區(qū)間、值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2sin θ.

(1)C1的參數(shù)方程化為極坐標(biāo)方程;

(2)C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

同步練習(xí)冊(cè)答案