【題目】已知定義在區(qū)間(﹣1,1)上的增函數(shù)f(x)= 為奇函數(shù),且f( )=
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于t的不等式f(t﹣1)+f(t)<0.
【答案】
(1)解:∵f(x)是在區(qū)間(﹣1,1)上的奇函數(shù),
∴f(0)=b=0
又 ,
∴a=1∴
(2)解:∵f(t﹣1)+f(t)<0,且f(x)為奇函數(shù),
∴f(t)<﹣f(t﹣1)=f(1﹣t)
又函數(shù)f(x)在區(qū)間(﹣1,1)上是增函數(shù)∴ ,解得
故關(guān)于t的不等式的解集為 .
【解析】(1)根據(jù)函數(shù)奇偶性和特殊值建立方程關(guān)系求出a,b的值即可.(2)根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化求解即可.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(3x+)﹣1在[﹣ , ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一個負根,求a的取值范圍;
(Ⅱ)當(dāng)x>﹣1時,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列{an}的前項n和Sn , a2= ,且S1+ ,S2 , S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=anbn , 若對任意n∈N+ , 不等式c1+c2+…+cn≥ λ+2Sn﹣1恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,cosA=﹣ ,cosB= ,
(1)求sinA,sinB,sinC的值
(2)設(shè)BC=5,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某營養(yǎng)師要求為某個兒童預(yù)訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物,6個單位的蛋白質(zhì)和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的蛋白質(zhì)和10個單位的維生素C.另外,該兒童這兩餐需要的營狀中至少含64個單位的碳水化合物和42個單位的蛋白質(zhì)和54個單位的維生素C.如果一個單位的午餐、晚餐的費用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個單位的午餐和晚餐?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為正方形的四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,PA⊥AD,PA=AD,則異面直線PB與AC所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com