【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,點的極坐標,直線經(jīng)過點,且傾斜角為.

1)寫出曲線的直角坐標方程和直線的標準參數(shù)方程;

2)直線與曲線交于兩點,直線的參數(shù)方程為t為參數(shù)),直線與曲線交于兩點,求證:.

【答案】1,t為參數(shù));(2)證明見解析.

【解析】

1)利用消參得到曲線的直角坐標方程,求點的直角坐標,再直接寫成直線的標準參數(shù)方程;(2)首先將直線的參數(shù)方程和曲線聯(lián)立,利用參數(shù)的幾何意義可知,同理可得,利用根與系數(shù)的關系證明.

1)由為參數(shù))消去參數(shù)

得點的直角坐標為

∴直線的標準參數(shù)方程為t為參數(shù))

2)將直線的標準參數(shù)方程t為參數(shù))代入

化簡得

設方程兩根為,則

由直線參數(shù)方程中的幾何意義得

同理將的參數(shù)方程代入的參數(shù)方程可得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】疫情期間,一同學通過網(wǎng)絡平臺聽網(wǎng)課,在家堅持學習.某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學,語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準備在上午下午的課程中各任選一節(jié)進行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學科(政治、歷史、地理)課程的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中

(1)是函數(shù)的極值點,求實數(shù)的值;

(2)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1,F2是橢圓Cab0)的左、右焦點,過橢圓的上頂點的直線x+y=1被橢圓截得的弦的中點坐標為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過F1的直線l交橢圓于A,B兩點,當△ABF2面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

1)求函數(shù)的圖象在處的切線方程;

2)求證:方程有兩個實數(shù)根;

3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,bc為正實數(shù),且滿足a+b+c1.證明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱強軍利刃”“強國之盾,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關注,還得到了無數(shù)外國人的關注.某單位有10位外國人,其中關注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關注此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.

(1)求圓的普通方程和直線的直角坐標方程;

(2)設直線軸, 軸分別交于兩點,點是圓上任一點,求兩點的極坐標和面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全民抗擊新冠肺炎疫情期間,北京市開展了停課不停學活動,此活動為學生提供了多種網(wǎng)絡課程資源以供選擇使用.活動開展一個月后,某學校隨機抽取了高三年級的甲、乙兩個班級進行網(wǎng)絡問卷調(diào)查,統(tǒng)計學生每天的學習時間,將樣本數(shù)據(jù)分成五組,并整理得到如下頻率分布直方圖:

1)已知該校高三年級共有600名學生,根據(jù)甲班的統(tǒng)計數(shù)據(jù),估計該校高三年級每天學習時間達到5小時及以上的學生人數(shù);

2)已知這兩個班級各有40名學生,從甲、乙兩個班級每天學習時間不足4小時的學生中隨機抽取3人,記從甲班抽到的學生人數(shù)為,求的分布列和數(shù)學期望;

3)記甲、乙兩個班級學生每天學習時間的方差分別為,,試比較的大小.(只需寫出結論)

查看答案和解析>>

同步練習冊答案