若函數(shù)y=f(x)是奇函數(shù),則
1
-1
f(x)dx=(  )
分析:解題的關(guān)鍵是利用被積函數(shù)是奇函數(shù),得到∫-11f(x)dx=0,從而解決問題.
解答:解:∵f(x)是奇函數(shù),
故其圖象關(guān)于原點對稱,
根據(jù)定積分的幾何意義是函數(shù)圖象與x軸所圍成的封閉圖形的面積的代數(shù)和,知
函數(shù)f(x)在區(qū)間[-1,1]上的圖象必定關(guān)于原點O對稱,
從而函數(shù)圖象與x軸所圍成的封閉圖形的面積的代數(shù)和為0,
故∫-11f(x)dx=0.
故選A.
點評:本題主要考查了偶函數(shù)的性質(zhì)、定積分及定積分的應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)是函數(shù)y=ax(0<a≠1)的反函數(shù),其圖象經(jīng)過點(
a
,a),則函數(shù)y=f(x+
4
x
-3)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),則f′(x)>0是函數(shù)f(x)為增函數(shù)的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)是函數(shù)y=logax(a>0且a≠1)的反函數(shù),且f(2)=
1
9
,則f(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)是函數(shù)y=ax(0<a≠1)的反函數(shù),其圖象過點(
a
,a)
,且函數(shù)y=-f(x+
m
x
-3)
在區(qū)間(2,+∞)上是增函數(shù),則正數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案