【題目】若函數(shù)f(x)同時(shí)滿足以下三個(gè)性質(zhì);①f(x)的最小正周期為π;②對(duì)任意的x∈R,都有f(x﹣ )=f(﹣x);③f(x)在( , )上是減函數(shù).則f(x)的解析式可能是(
A.f(x)=cos(x+
B.f(x)=sin2x﹣cos2x
C.f(x)=sinxcosx
D.f(x)=sin2x+cos2x

【答案】D
【解析】解:根據(jù)題意,函數(shù)應(yīng)滿足:①f(x)的最小正周期為π;
②對(duì)任意的x∈R,都有f(x﹣ )+f(﹣x)=0,
用x+ 替換式中的x可得f(x﹣ )+f(﹣x﹣ )=0,
即函數(shù)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱;
③f(x)在( )上是減函數(shù);
對(duì)于A,f(x)=cos(x+ )的周期為T=2π,不符合①,故不滿足題意;
對(duì)于B,f(x)=sin2x﹣cos2x= sin(2x﹣ ),不符合②,故不滿足題意;
對(duì)于C,f(x)=sinxcosx= sin2x,不符合②,故不滿足題意;
對(duì)于D,f(x)=sin2x+cos2x= sin(2x+ ),符合①②③,滿足題意.
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= , g(x)=asin(x+π)﹣2a+2(a>0),給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對(duì)任意a>0,方程f(x)=g(x)在區(qū)間[0,1]內(nèi)恒有解;
④若x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是:≤a≤
其中所有正確結(jié)論的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法
①在△ABC中,若∠A>∠B,則sinA>sinB;
②等差數(shù)列{an}中,a1 , a3 , a4成等比數(shù)列,則公比為;
③已知a>0,b>0,a+b=1,則+的最小值為5+2;
④在△ABC中,已知== , 則∠A=60°.
正確的序號(hào)有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lρsin=4和圓Cρ=2kcos(k≠0),若直線l上的點(diǎn)到圓C上的點(diǎn)的最小距離等于2.求實(shí)數(shù)k的值并求圓心C的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=1,對(duì)a,b∈(0,+∞),+≥|2x﹣1|﹣|x+1|恒成立,
(Ⅰ)求+的最小值;
(Ⅱ)求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx﹣cosωx+m(ω>0,x∈R,m是常數(shù))的圖象上的一個(gè)最高點(diǎn) ,且與點(diǎn) 最近的一個(gè)最低點(diǎn)是
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 ac,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺(tái)A、B設(shè)備上加工一件甲所需工時(shí)分別為1,2,加工一件乙設(shè)備所需工時(shí)分別為2,1.A、B兩種設(shè)備每月有效使用臺(tái)時(shí)數(shù)分別為400和500,分別用表示計(jì)劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).

(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C:過點(diǎn),離心率為

(1)求橢圓C的方程;

(2)設(shè)斜率為1的直線過橢圓C的左焦點(diǎn)且與橢圓C相交于A,B兩點(diǎn),求AB的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線l.

(1)求直線l的直角坐標(biāo)方程;

(2)設(shè)直線l的交點(diǎn)為P1,P2,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案