在△ABC中,a=xcm,b=2cm,B=45°,若用正弦定理解此三角形時(shí)有兩個(gè)解,則x的取值范圍是________.
分析:利用正弦定理和b和sinB求得a和sinA的關(guān)系,利用B求得A+C;要使三角形兩個(gè)這兩個(gè)值互補(bǔ)先看若A≤45°,則和A互補(bǔ)的角大于135°進(jìn)而推斷出A+B>180°與三角形內(nèi)角和矛盾;進(jìn)而可推斷出45°<A<135°若A=90,這樣補(bǔ)角也是90°,一解不符合題意進(jìn)而可推斷出sinA的范圍,利用sinA和a的關(guān)系求得a的范圍.
解答:
=
=2
∴a=2
sinA
A+C=180°-45°=135°
A有兩個(gè)值,則這兩個(gè)值互補(bǔ)
若A≤45°
則和A互補(bǔ)的角大于等于135°
這樣A+B≥180°,不成立
∴45°<A<135°
又若A=90,這樣補(bǔ)角也是90°,一解
所以
<sinA<1
a=2
sinA
所以2<a<2
故答案為(2,2
).
點(diǎn)評(píng):本題主要考查了正弦定理的應(yīng)用.考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力.