若傾斜角為的直線l通過拋物線y2=4x的焦點且與拋物線相交于M、N兩點,則線段MN的長為( )
A.
B.8
C.16
D.
【答案】分析:先根據(jù)題意寫出直線的方程,再將直線的方程與拋物線y2=4x的方程組成方程組,消去y得到關(guān)于x的二次方程,最后利用根與系數(shù)的關(guān)系結(jié)合拋物線的定義即可求線段AB的長.
解答:解:設(shè)A(x1,y1),B(x2,y2),A,B到準(zhǔn)線的距離分別為dA,dB,
由拋物線的定義可知|AF|=dA=x1+1,|BF|=dB=x2+1,于是|AB|=|AF|+|BF|=x1+x2+2.
由已知得拋物線的焦點為F(1,0),斜率k=tan =1,所以直線AB方程為y=x-1.
將y=x-1代入方程y2=4x,得(x-1)2=4x,化簡得x2-6x+1=0.
由求根公式得x1+x2=6,于是|AB|=|AF|+|BF|=x1+x2+2=8.
故選B.
點評:本題主要考查了拋物線的應(yīng)用以及直線與圓錐曲線的綜合問題和方程的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,設(shè)傾斜角為α的直線l:
x=2+tcosα
y=
3
+tsinα
(t為參數(shù))與曲線 C:
x=2cosθ
y=sinθ
(θ為參數(shù))相交于不同兩點A,B.
(1)若α=
π
3
,求線段AB中點M的坐標(biāo);
(2)若|PA|•|PB|=|OP|2,其中P(2,
3
)
,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F(4m,0)(M>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若θ=90°時,
1
MF
+
1
NF
=
5
2
9
,求實數(shù)m;
(3)試問
1
MF
+
1
NF
的值是否與θ的大小無關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請寫出△ABC在矩陣M-1對應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點.
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省杭州十四中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若傾斜角為的直線l通過拋物線y2=4x的焦點且與拋物線相交于M、N兩點,則線段MN的長為( )
A.
B.8
C.16
D.

查看答案和解析>>

同步練習(xí)冊答案