已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最值

(1)上是增函數(shù),上是增函數(shù)
(2)最小值-18,最大值為2.

解析試題分析:.解: (I)
          
若 
上是增函數(shù),上是增函數(shù)
若 ,故上是減函數(shù)       -6分
(II)  

--- -12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性以及最值的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的導(dǎo)函數(shù),且,設(shè),

(Ⅰ)討論在區(qū)間上的單調(diào)性;
(Ⅱ)求證:
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),過曲線上的點(diǎn)P的切線方程為
(1)若時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若a=-1,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45o,對于任意的t [1,2],函數(shù)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為非零常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)對于增區(qū)間內(nèi)的三個(gè)實(shí)數(shù)(其中),
證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(Ⅰ)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(Ⅱ)對一切的,恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對任意,都有;
(3)若,對于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處取得極值
(1)求
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案