設(shè),.
(1)請(qǐng)寫(xiě)出的表達(dá)式(不需證明);
(2)求的極小值;
(3)設(shè)的最大值為的最小值為,求的最小值.

(1);(2);(3).

解析試題分析: (1)依次求出,,,
由此便可猜測(cè)出的表達(dá)式.
(2)要求的極小值,先求出,
可得的單調(diào)區(qū)間和極值.
(3)配方法可以求出.
由(2)得:,所以.
問(wèn)題轉(zhuǎn)化為求的最小值.這又有兩種方法:
法一、構(gòu)造函數(shù),通過(guò)求導(dǎo)來(lái)求它的最小值;法二、通過(guò)研究這個(gè)數(shù)列的單調(diào)性來(lái)求它的最小值.
試題解析:(1)根據(jù),,,
猜測(cè)出的表達(dá)式.      4分
(2)求導(dǎo)得:,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/e/8xfh73.png" style="vertical-align:middle;" />時(shí),;當(dāng)時(shí),.
所以,當(dāng)時(shí),取得極小值,
.                       8分
(3)將配方得,
所以.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7c/c/1jrrv1.png" style="vertical-align:middle;" />,所以,10分
問(wèn)題轉(zhuǎn)化為求的最小值.
解法1(構(gòu)造函數(shù)):
,
,又在區(qū)間上單調(diào)遞增,
所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/9/xkfug1.png" style="vertical-align:middle;" />,,
所以存在使得
又有在區(qū)間上單調(diào)遞增,所以時(shí),;
當(dāng)時(shí),,
在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
所以
又由于,,
所以當(dāng)時(shí),取得最小值
解法2(利用數(shù)列的單調(diào)性):
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/2/hgt99.png" style="vertical-align:middle;" />,
當(dāng)時(shí),,
所以,所以.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/c/jtbx61.png" style="vertical-align:middle;" />,.
所以當(dāng)時(shí),取得最小值.14分
考點(diǎn):1、歸納推理;2、導(dǎo)數(shù)的應(yīng)用;3、函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某醫(yī)藥研究所開(kāi)發(fā)一種新藥,據(jù)監(jiān)測(cè),如果成人按規(guī)定劑量服用該藥,服藥后每毫升血液中的含藥量與服藥后的時(shí)間之間近似滿(mǎn)足如圖所示的曲線.其中是線段,曲線段是函數(shù)是常數(shù)的圖象.

(1)寫(xiě)出服藥后每毫升血液中含藥量關(guān)于時(shí)間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定:每毫升血液中含藥量不少于時(shí)治療有效,假若某病人第一次服藥為早上,為保持療效,第二次服藥最遲是當(dāng)天幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥后再過(guò),該病人每毫升血液中含藥量為多少

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且兩函數(shù)定義域均為
(1).畫(huà)函數(shù)在定義域內(nèi)的圖像,并求值域;(5分)
(2).求函數(shù)的值域.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知(a是常數(shù),a∈R)
(Ⅰ)當(dāng)a=1時(shí)求不等式的解集;
(Ⅱ)如果函數(shù)恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在一般情況下,大橋上的車(chē)流速度(單位:千米/小時(shí))是車(chē)流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為;當(dāng)時(shí),車(chē)流速度為千米/小時(shí).研究表明:當(dāng)時(shí),車(chē)流速度是車(chē)流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2.7萬(wàn)元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷(xiāo)售完,每千件的銷(xiāo)售收入為萬(wàn)元,且
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)品(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤(rùn)最大?
(注:年利潤(rùn)=年銷(xiāo)售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域?yàn)閰^(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為7-2t?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由(注:區(qū)間[p,q]的長(zhǎng)度為q-p).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量(單位:千克)與銷(xiāo)售價(jià)格(單位:元/千克)滿(mǎn)足關(guān)系式,其中,為常數(shù),已知銷(xiāo)售價(jià)格為4元/千克時(shí),每日可銷(xiāo)售出該商品5千克;銷(xiāo)售價(jià)格為4.5元/千克時(shí),每日可銷(xiāo)售出該商品2.35千克.
(1)求的解析式;
(2)若該商品的成本為2元/千克,試確定銷(xiāo)售價(jià)格的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若f(x)的定義域?yàn)閇a,b],值域?yàn)閇a,b](a<b),則稱(chēng)函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設(shè)g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問(wèn)是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案