、
是橢圓
的焦點,在C上滿足
的點P的個數(shù)
為 .
本題考查橢圓的幾何性質(zhì)
由
知,點
在以為
為直徑的圓上,此圓與橢圓
的交點的個數(shù)即為滿足
的點的個數(shù)
由
得
,則
,則
則以
為直徑的圓的方程為
由
得
,即橢圓
與圓
有兩個交點
,故滿足條件的點的個數(shù)為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓
:
的一個焦點
,
(c為橢圓的半焦距).
(1)求橢圓
的方程;
(2)若
為直線
上一點,
為橢圓
的左頂點,連結(jié)
交橢圓于點
,求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過橢圓
內(nèi)一點
引一條弦,使得弦被
點平分,則此弦所在的直線方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)設橢圓
(a>b>0)的左焦點為F
1(-2,0),左準線 L
1 與x軸交于點N(-3,0),過點N且傾斜角為30
0的直線L交橢圓于A、B兩點。
(1)求直線L和橢圓的方程;
(2)求證:點F
1(-2,0)在以線段AB為直徑的圓上
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C的左,右焦點坐標分別為
,離心率是
。橢圓C的左,右頂點分別記為A,B。點S是橢圓C上位于
軸上方的動點,直線AS,BS與直線
分別交于M,N兩點。
(1) 求橢圓C的方程;
(2) 求線段MN長度的最小值;
(3) 當線段MN的長度最小時,在橢圓C上的T滿足:T到直線AS的距離等于
.
試確定點T的個數(shù)。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分
12分)
已知橢圓
C:
(a>b>0)的離心率為
短軸一個端點到右焦點的
距離為
.
(Ⅰ)求橢圓
C的方程;
(Ⅱ)設直線
l與橢圓
C交于
A、
B兩點,坐標原點
O到直線
l的距離為
,求△
AOB面積的
最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設橢圓
的焦點在y軸上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},則這樣的橢圓的個數(shù)是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,點
是橢圓上一定點,直線
交橢圓于不同的兩點
、
.
(1)求橢圓方程
(2)求
的取值范圍.
查看答案和解析>>