給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說(shuō)明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)利用(2)中函數(shù),構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過(guò)程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)無(wú)窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
分析:(1)對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值g(x0)∈(-1,1)∉D1,故函數(shù)g(x)=2x-1在D1上不封閉;
(2)若存在,則f(x)=
5x-a
x+2
=5-
10+a
x+2
,根據(jù)定義域D2=(1,5],可知(
5-a
3
,
25-a
7
]
∈(1,5],故可求;
(3)①根據(jù)題意,只需當(dāng)x≠-2時(shí),方程f(x)=x有解,方程x2-3x+a=0有不等于2的解.將x=2代入方程,得x=2,由此可得a的取值范圍.
②根據(jù)題意,f(x)=a在R中無(wú)解,亦即當(dāng)x≠-2時(shí),方程(5-a)x=3a無(wú)實(shí)數(shù)解.由此能夠?qū)С鯽.
解答:解:(1)對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值g(x0)∈(-1,1)∉D1,
故函數(shù)g(x)=2x-1在D1上不封閉;
(2)若存在,則f(x)=
5x-a
x+2
=5-
10+a
x+2
,
∵定義域D2=(1,5],∴(
5-a
3
,
25-a
7
]
∈(1,5],
∴-10≤a≤-2
(3)①根據(jù)題意,只需當(dāng)x≠-2時(shí),方程f(x)=x有解,方程x2-3x+a=0有不等于2的解.
將x=-2代入方程,得a=-10,由此可得a的取值范圍是(-∞,-10)∪(-10,+∞).
②根據(jù)題意,f(x)=
5x-a
x+2
=a在R中無(wú)解,
亦即當(dāng)x≠-2時(shí),方程(5-a)x=3a無(wú)實(shí)數(shù)解.
∴a=5即為所求a的值.
點(diǎn)評(píng):本題以新定義函數(shù)為載體,考查新定義,關(guān)鍵是對(duì)新定義的理解,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉(寫(xiě)出推理過(guò)程):f1(x)=2x-1,f2(x)=-
1
2
x2
-
1
2
x
+1,f3(x)=2x-1;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-a
x+2
在D2上封閉?若存在,求出a的值,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉,且給出推理過(guò)程f1(x)=2x-1,f2(x)=-
1
2
x2-
1
2
x+1
,f3(x)=2x-1,f4(x)=cosx.;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a使函數(shù)f(x)=
5x-a
x+2
在D2上封閉,若存在,求出a的值,并給出證明,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高二下學(xué)期期末考試數(shù)學(xué)文 題型:解答題

(本小題滿(mǎn)分16分:8+8)

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任一個(gè)自變量,都有函數(shù)值,則稱(chēng)函數(shù)y=f(x)在 D上封閉。

(1)若定義域判斷下列函數(shù)中哪些在上封閉,并給出推理過(guò)程;

    

(2)若定義域是否存在實(shí)數(shù),使函數(shù)上封閉,若存在,求出值,若不存在,請(qǐng)說(shuō)明理由。

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉(寫(xiě)出推理過(guò)程):f1(x)=2x-1,f2(x)=-數(shù)學(xué)公式-數(shù)學(xué)公式+1,f3(x)=2x-1;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a,使得函數(shù)f(x)=數(shù)學(xué)公式在D2上封閉?若存在,求出a的值,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案