精英家教網 > 高中數學 > 題目詳情
(2012•自貢一模)甲、乙兩人喊拳,每人可以用手出0,5,10三種數字,每人則可喊0,5,10,15,20五種數字,當兩人所出數字之和等于某人所喊時為勝,若甲喊10,乙喊15時,則( 。
分析:列舉出符合題意的各種情況的個數,再根據概率公式解答比較即可.
解答:解:甲、乙兩人喊拳,每人可以用手出0,5,10三種數字,共有3×3=9種可能,
若甲喊10,甲勝的情況有:甲用手出0,乙用手出10;或甲用手出5,乙用手出5;甲用手出10,乙用手出0;
共3種,甲勝的概率為
3
9
=
1
3
;
若乙喊15時,乙勝的情況有:甲用手出5,乙用手出10;甲用手出10,乙用手出5;
共2種,乙勝的概率為
2
9
;
∴乙<甲.
故選A.
點評:本題主要考查了概率的應用,用到的知識點為:概率=所求情況數與總情況數之比.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•自貢一模)已知
a
+
b
+
c
=
0
,且
a
c
的夾角為60°,|
b
|=
3
|
a
|,則cos<
a
,
b
等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•自貢一模)已知函數f(x)=
2x     ,x≥0
x(x+1),x<0
,則f(-2)等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•自貢一模)f(x)是以4為周期的奇函數,f(
1
2
)=1
sinα=
1
4
,則f(4cos2α)=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•自貢一模)要研究可導函數f(x)=(1+x)n(n∈N*)在某點x0處的瞬時變化率,有兩種方案可供選擇:①直接求導,得到f′(x),再把橫坐標x0代入導函數f′(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導,再把橫坐標x0代入導函數f′(x)的表達式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•自貢一模)已知函數f(x)的定義域為[0,1],且同時滿足:①對于任意x∈[0,1],總有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函數f(x)的最大值;
(III)設數列{an}的前n項和為Sn,滿足a1=1,Sn=-
1
2
(an-3),n∈N*
,求證:f(a1)+f(a2)+…+f(an)<
3
2
log3
27
a
2
n

查看答案和解析>>

同步練習冊答案