曲線y=x3+2x2-2x-1在點(diǎn)x=1處的切線方程是( 。
A.y=5x-1B.y=5x-5C.y=3x-3D.y=x-1
y'=3x2+4x-2
∴y'|x=1=5
而切點(diǎn)坐標(biāo)為(1,0),斜率為5
∴曲線y=x3+2x2-2x-1在x=1處的切線方程為y=5(x-1)即y=5x-5
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)f(x)=ax3+bx2+cx的圖象如圖所示,且f(x)在x=x0與x=-1處取得極值,給出下列判斷:
①f(1)+f(-1)=0;②f(-2)>0;③函數(shù)y=f'(x)在區(qū)間(-∞,0)上是增函數(shù).其中正確的判斷是______.(寫(xiě)出所有正確判斷的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=lnx+a(x2-x)
(1)若a=-1,求證f(x)有且僅有一個(gè)零點(diǎn);
(2)若對(duì)于x∈[1,2],函數(shù)f(x)圖象上任意一點(diǎn)處的切線的傾斜角都不大于
π
4
,求實(shí)數(shù)a的取值范圍;
(3)若f(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)a=1時(shí),過(guò)原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)0<a<
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
3
時(shí),設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對(duì)于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.(e是自然對(duì)數(shù)的底,e<
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=mx-
m
x
,g(x)=2lnx
(1)當(dāng)m=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)m=1時(shí),證明方程f(x)=g(x)有且僅有一個(gè)實(shí)數(shù)根;
(3)若x∈(1,e]時(shí),不等式f(x)-g(x)<2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ax-lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由;
(3)求證:當(dāng)x∈(0,e]時(shí),e2x-
5
2
>lnx+
lnx
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
eax
x2+1
,a∈R

(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)y=f(x)是R上的可導(dǎo)函數(shù),當(dāng)x≠0時(shí),有f′(x)+
f(x)
x
>0
,則函數(shù)F(x)=xf(x)+
1
x
的零點(diǎn)個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
1+lnx
x

(1)若函數(shù)f(x)在區(qū)間(
a
2
,a+
1
2
)
上存在極值,其中a>0,求實(shí)數(shù)a的取值范圍.
(2)設(shè)g(x)=xf(x)+bx-1+ln(2-x
)
(b>0)
,若g(x)在(0,1]上的最大值為
1
2
,求實(shí)數(shù)b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案