已知m,t∈R,函數(shù)f x) =(x - t)3+m.

(I)當(dāng)t =1時(shí),

(i)若f (1) =1,求函數(shù)f x)的單調(diào)區(qū)間;

(ii)若關(guān)于x的不等式f x)≥x3—1在區(qū)間[1,2]上有解,求m的取值范圍;

(Ⅱ)已知曲線y= f x)在其圖象上的兩點(diǎn)Ax1,f x1)),Bx2,f x2)))( x1x2)處的切線分別為l1、l2.若直線l1l2平行,試探究點(diǎn)A與點(diǎn)B的關(guān)系,并證明你的結(jié)論.

解:(Ⅰ)(i)因?yàn)?sub>,所以,       1分

, 而恒成立,

所以函數(shù)的單調(diào)遞增區(qū)間為.   4分

(ii)不等式在區(qū)間上有解,

即  不等式在區(qū)間上有解,

即  不等式在區(qū)間上有解,

等價(jià)于在區(qū)間上的最小值,                                6分

因?yàn)?sub>時(shí),

所以的取值范圍是.                         9分

(Ⅱ)因?yàn)?sub>的對(duì)稱中心為

可以由經(jīng)平移得到,

所以的對(duì)稱中心為,故合情猜測,若直線平行,則點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱.   10分

對(duì)猜想證明如下:

因?yàn)?sub>

所以

所以,,的斜率分別為

又直線平行,所以,即,

因?yàn)?sub>,

所以,,                                 12分

從而,

所以

又由上

所以點(diǎn)關(guān)于點(diǎn)(對(duì)稱.

故直線平行時(shí),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱.   14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,t∈R,函數(shù)f (x)=(x-t)3+m.
(I)當(dāng)t=1時(shí),
(i)若f (1)=1,求函數(shù)f (x)的單調(diào)區(qū)間;
(ii)若關(guān)于x的不等式f (x)≥x3-1在區(qū)間[1,2]上有解,求m的取值范圍;
(Ⅱ)已知曲線y=f (x)在其圖象上的兩點(diǎn)A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線分別為l1、l2.若直線l1與l2平行,試探究點(diǎn)A與點(diǎn)B的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測文科數(shù)學(xué) 題型:解答題

(本小題滿分1 4分)已知m,t∈R,函數(shù)f (x) =(x - t)3+m.

(I)當(dāng)t =1時(shí),

(i)若f (1) =1,求函數(shù)f (x)的單調(diào)區(qū)間;

(ii)若關(guān)于x的不等式f (x)≥x3—1在區(qū)間[1,2]上有解,求m的取值范圍;

(Ⅱ)已知曲線y= f (x)在其圖象上的兩點(diǎn)A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線

分別為l1、l2.若直線l1與l2平行,試探究點(diǎn)A與點(diǎn)B的關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知m,t∈R,函數(shù)f (x)=(x-t)3+m.
(I)當(dāng)t=1時(shí),
(i)若f (1)=1,求函數(shù)f (x)的單調(diào)區(qū)間;
(ii)若關(guān)于x的不等式f (x)≥x3-1在區(qū)間[1,2]上有解,求m的取值范圍;
(Ⅱ)已知曲線y=f (x)在其圖象上的兩點(diǎn)A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線分別為l1、l2.若直線l1與l2平行,試探究點(diǎn)A與點(diǎn)B的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年新課標(biāo)版高考數(shù)學(xué)模擬系列2(文科)(解析版) 題型:解答題

已知m,t∈R,函數(shù)f (x)=(x-t)3+m.
(I)當(dāng)t=1時(shí),
(i)若f (1)=1,求函數(shù)f (x)的單調(diào)區(qū)間;
(ii)若關(guān)于x的不等式f (x)≥x3-1在區(qū)間[1,2]上有解,求m的取值范圍;
(Ⅱ)已知曲線y=f (x)在其圖象上的兩點(diǎn)A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線分別為l1、l2.若直線l1與l2平行,試探究點(diǎn)A與點(diǎn)B的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案