如圖,在六面體中,四邊形ABCD是邊長(zhǎng)為2的正方形,四邊形是邊長(zhǎng)為1的正方形,平面,平面ABCD,
(Ⅰ)求證:A1C1與AC共面,B1D1與BD共面;
(Ⅱ)求證:平面
(Ⅲ)求二面角的大小(用反三角函數(shù)值表示).
本小題主要考查直線與平面的位置關(guān)系、平面與平面的位置關(guān)系、二面角及其平面角等有關(guān)知識(shí),考查空間想象能力和思維能力,應(yīng)用向量知識(shí)解決立體幾何問題的能力.
解法1(向量法):
以為原點(diǎn),以所在直線分別為
軸,軸,軸建立空間直角坐標(biāo)系如圖,
則有.
(Ⅰ)證明:.
.
與平行,與平行,
于是與共面,與共面.
(Ⅱ)證明:,,
,.
與是平面內(nèi)的兩條相交直線.
平面.
又平面過.
平面平面.
(Ⅲ)解:.
設(shè)為平面的法向量,
,.
于是,取,則,.
設(shè)為平面的法向量,
,.
于是,取,則,.
.
二面角的大小為.
解法2(綜合法):
(Ⅰ)證明:平面,平面.
,,平面平面.
于是,.
設(shè)分別為的中點(diǎn),連結(jié),
有.
,
于是.
由,得,
故,與共面.
過點(diǎn)作平面于點(diǎn),
則,連結(jié),
于是,,.
,.
,.
所以點(diǎn)在上,故與共面.
(Ⅱ)證明:平面,,
又(正方形的對(duì)角線互相垂直),
與是平面內(nèi)的兩條相交直線,
平面.
又平面過,平面平面.
(Ⅲ)解:直線是直線在平面上的射影,,
根據(jù)三垂線定理,有.
過點(diǎn)在平面內(nèi)作于,連結(jié),
則平面,
于是,
所以,是二面角的一個(gè)平面角.
根據(jù)勾股定理,有.
,有,,,.
,,
二面角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2002年全國(guó)各省市高考模擬試題匯編 題型:044
如圖,平行六面體ABCD—中,AC=,BC===2,∠ABC=點(diǎn)O是點(diǎn)在底面ABCD上的射影,且點(diǎn)O恰好落在AC上.
(Ⅰ)求側(cè)棱與底面ABCD所成角的大;
(Ⅱ)求側(cè)面與底面ABCD所成二面角的正切值;
(Ⅲ)求四棱錐C—的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:中山市東升高中2008屆高三數(shù)學(xué)基礎(chǔ)達(dá)標(biāo)訓(xùn)練13 題型:013
六個(gè)面都是平行四邊形的四棱柱稱為平行六面體.如圖1在平行四邊形ABC中,有AC2+BD2=2(AB2+AD2),那么在圖2所示的平行六面體ABCD-A1B1C1中,有AC12+BD12+CA12+DB12=
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,平行六面體ABCD-A'B'C'D'中,AC=2,BC=AA'=A'C=2,∠ABC=90°,點(diǎn)O是點(diǎn)A'在底面ABCD上的射影,且點(diǎn)O恰好落在AC上.
(1)求側(cè)棱AA'與底面ABCD所成角的大;
(2)求側(cè)面A'ADD'底面ABCD所成二面角的正切值;
(3)求四棱錐C-A'ADD'的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省四地六校高二下學(xué)期第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
六個(gè)面都是平行四邊形的四棱柱稱為平行六面體。如圖①,在平行四邊ABCD中,,那么在圖②中所示的平行六面體中,等于( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com