橢圓C:=1(a>b>0)的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明+為定值,并求出這個定值.
(1)+y2=1.(2)+為定值,這個定值為-8
【解析】(1)由于c2=a2-b2,將x=-c代入橢圓方程=1,得y=±.
由題意知=1,即a=2b2.
又e==,所以a=2,b=1.所以橢圓C的方程為+y2=1.
(2)設P(x0,y0)(y0≠0),又F1(-,0),F2(,0),
知,
直線l的方程為y-y0=k(x-x0).聯(lián)立得
整理得(1+4k2)x2+8(ky0-k2x0)x+4(-2kx0y0+k2-1)=0.
由題意Δ=0,即(4-)k2+2x0y0k+1-=0.
又+=1,
所以16k2+8x0y0k+=0,故k=-.
所以+==·=-8,
因此+為定值,這個定值為-8
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練3練習卷(解析版) 題型:填空題
設命題p:非零向量a,b,|a|=|b|是(a+b)⊥(a-b)的充要條件;命題q:平面上M為一動點,A,B,C三點共線的充要條件是存在角α,使=sin2α+cos2α,下列命題①p∧q;②p∨q;③?p∧q;④?p∨q.
其中假命題的序號是________.(將所有假命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練1練習卷(解析版) 題型:選擇題
在△ABC中,D為邊BC上任意一點,=λ+μ,則λμ的最大值為( )
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題6第2課時練習卷(解析版) 題型:選擇題
投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣正面向上”為事件A,“骰子向上的點數(shù)是3”為事件B,則事件A,B中至少有一個發(fā)生的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題6第1課時練習卷(解析版) 題型:選擇題
已知集合M={x|-2≤x≤8},N={x|x2-3x+2≤0},在集合M中任取一個元素x,則“x∈M∩N”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第2課時練習卷(解析版) 題型:填空題
若雙曲線=1漸近線上的一個動點P總在平面區(qū)域(x-m)2+y2≥16內,則實數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第2課時練習卷(解析版) 題型:選擇題
已知方程=1表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是( )
A. B.(1,+∞) C.(1,2) D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題4第2課時練習卷(解析版) 題型:解答題
如圖,點C是以AB為直徑的圓上的一點,直角梯形BCDE所在平面與圓O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.
(1)證明:EO∥平面ACD;
(2)證明:平面ACD⊥平面BCDE.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題3第1課時練習卷(解析版) 題型:解答題
某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos 48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)試從上述五個式子中選擇一個,求出這個常數(shù);
(2)根據(jù)(1)的計算結果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com